Robot grasping has been widely studied in the last decade. Recently, Deep Learning made possible to achieve remarkable results in grasp pose estimation, using depth and RGB images. However, only few works consider the choice of the object to grasp. Moreover, they require a huge amount of data for generalizing to unseen object categories. For this reason, we introduce the Few-shot Semantic Grasping task where the objective is inferring a correct grasp given only five labelled images of a target unseen object. We propose a new deep learning architecture able to solve the aforementioned problem, leveraging on a Few-shot Semantic Segmentation module. We have evaluated the proposed model both in the Graspnet dataset and in a real scenario. In Graspnet, we achieve 40,95% accuracy in the Few-shot Semantic Grasping task, outperforming baseline approaches. In the real experiments, the results confirmed the generalization ability of the network.
FSG-Net: a Deep Learning model for Semantic Robot Grasping through Few-Shot Learning
Bacchin, Alberto
;Gottardi, Alberto;Menegatti, Emanuele;Ghidoni, Stefano
2023
Abstract
Robot grasping has been widely studied in the last decade. Recently, Deep Learning made possible to achieve remarkable results in grasp pose estimation, using depth and RGB images. However, only few works consider the choice of the object to grasp. Moreover, they require a huge amount of data for generalizing to unseen object categories. For this reason, we introduce the Few-shot Semantic Grasping task where the objective is inferring a correct grasp given only five labelled images of a target unseen object. We propose a new deep learning architecture able to solve the aforementioned problem, leveraging on a Few-shot Semantic Segmentation module. We have evaluated the proposed model both in the Graspnet dataset and in a real scenario. In Graspnet, we achieve 40,95% accuracy in the Few-shot Semantic Grasping task, outperforming baseline approaches. In the real experiments, the results confirmed the generalization ability of the network.File | Dimensione | Formato | |
---|---|---|---|
ICRA2023_FSG.pdf
Open Access dal 03/06/2024
Tipologia:
Postprint (accepted version)
Licenza:
Accesso libero
Dimensione
5.27 MB
Formato
Adobe PDF
|
5.27 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.