Trapping phenomena degrade the dynamic performance of wide-bandgap transistors. However, the identification of the related traps is challenging, especially in presence of non-ideal defects. In this paper, we propose a novel methodology (trap-state mapping) to extract trap parameters, based on the mathematical study of stretched exponential recovery kinetics. To demonstrate the effectiveness of the approach, we use it to identify the properties of traps in AlGaN/GaN transistors, submitted to hot-electron stress. After describing the mathematical framework, we demonstrate that the proposed methodology can univocally describe the properties of the distribution of trap states. In addition, to prove the validity and the usefulness of the model, the trap properties extracted mathematically are used as input for TCAD simulations. The results obtained by TCAD closely match the experimental transient curves, thus confirming the accuracy of the trap-state mapping procedure. This methodology can be adopted also on other technologies, thus constituting a universal approach for the analysis of multiexponential trapping kinetics.

Trap-state mapping to model GaN transistors dynamic performance

Modolo, Nicola;De Santi, Carlo;Meneghesso, Gaudenzio;Zanoni, Enrico;Meneghini, Matteo
2022

Abstract

Trapping phenomena degrade the dynamic performance of wide-bandgap transistors. However, the identification of the related traps is challenging, especially in presence of non-ideal defects. In this paper, we propose a novel methodology (trap-state mapping) to extract trap parameters, based on the mathematical study of stretched exponential recovery kinetics. To demonstrate the effectiveness of the approach, we use it to identify the properties of traps in AlGaN/GaN transistors, submitted to hot-electron stress. After describing the mathematical framework, we demonstrate that the proposed methodology can univocally describe the properties of the distribution of trap states. In addition, to prove the validity and the usefulness of the model, the trap properties extracted mathematically are used as input for TCAD simulations. The results obtained by TCAD closely match the experimental transient curves, thus confirming the accuracy of the trap-state mapping procedure. This methodology can be adopted also on other technologies, thus constituting a universal approach for the analysis of multiexponential trapping kinetics.
2022
File in questo prodotto:
File Dimensione Formato  
s41598-022-05830-7.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3455470
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact