Hot electron trapping can significantly modify the performance of GaN-based HEMTs during hard switching operation. In this letter, we present a physics-based model based on rate equations to model the trapping kinetics of hot-electrons in GaN transistors submitted to semi- ON-state stress. The model is validated through comparison with the experimental data, obtained by means of a pulsed-drain current transient setup developed ad-hoc. Hot-electron trapping is found to have logarithmic time dependence; the first 10 mu ext{s} of operation are critical in determining the current collapse during stress.
A Physics-Based Approach to Model Hot-Electron Trapping Kinetics in p-GaN HEMTs
Modolo N.;De Santi C.;Meneghesso G.;Zanoni E.;Meneghini M.
2021
Abstract
Hot electron trapping can significantly modify the performance of GaN-based HEMTs during hard switching operation. In this letter, we present a physics-based model based on rate equations to model the trapping kinetics of hot-electrons in GaN transistors submitted to semi- ON-state stress. The model is validated through comparison with the experimental data, obtained by means of a pulsed-drain current transient setup developed ad-hoc. Hot-electron trapping is found to have logarithmic time dependence; the first 10 mu ext{s} of operation are critical in determining the current collapse during stress.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.