This paper presents a comprehensive review of AlGaN/GaN high electron mobility transistor failure physics and reliability, focusing on mechanisms affecting the gate-drain edge, where maximum electric field and peak temperatures are reached. Physical effects at the origin of device degradation (inverse piezoelectric effect, time-dependent trap formation and percolative conductive paths formation, and electrochemical AlGaN and GaN degradation) are discussed on the basis of literature data and unpublished results. Thermally activated mechanisms involving metal-metal and metal-semiconductor interdiffusion at the gate Schottky junction are also discussed.
AlGaN/GaN-Based HEMTs Failure Physics and Reliability: Mechanisms Affecting Gate Edge and Schottky Junction
ZANONI, ENRICO;MENEGHINI, MATTEO;MENEGHESSO, GAUDENZIO
2013
Abstract
This paper presents a comprehensive review of AlGaN/GaN high electron mobility transistor failure physics and reliability, focusing on mechanisms affecting the gate-drain edge, where maximum electric field and peak temperatures are reached. Physical effects at the origin of device degradation (inverse piezoelectric effect, time-dependent trap formation and percolative conductive paths formation, and electrochemical AlGaN and GaN degradation) are discussed on the basis of literature data and unpublished results. Thermally activated mechanisms involving metal-metal and metal-semiconductor interdiffusion at the gate Schottky junction are also discussed.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.