This paper presents a machine learned feature detector targeted to event-camera based visual odometry methods for unmanned aerial vehicles trajectory reconstruction. The proposed method uses machine-learned features to enhance the accuracy of the trajectory reconstruction. Traditional visual odometry methods suffer from poor performance in low light conditions and high-speed motion. The event-camera-based approach overcomes these limitations by detecting and processing only the changes in the visual scene. The machine-learned features are crafted to capture the unique characteristics of the event-camera data, enhancing the accuracy of the trajectory reconstruction. The inference pipeline is composed of a module repeated twice in sequence, formed by a Squeeze-and-Excite block and a ConvLSTM block with residual connection; it is followed by a final convolutional layer that provides the trajectories of the corners as a sequence of heatmaps. In the experimental part, a sequence of images w...
Trajectory reconstruction by means of an event-camera-based visual odometry method and machine learned features
Chiodini S.;G. Trevisanuto;C. Bettanini;G. Colombatti;M. Pertile
2023
Abstract
This paper presents a machine learned feature detector targeted to event-camera based visual odometry methods for unmanned aerial vehicles trajectory reconstruction. The proposed method uses machine-learned features to enhance the accuracy of the trajectory reconstruction. Traditional visual odometry methods suffer from poor performance in low light conditions and high-speed motion. The event-camera-based approach overcomes these limitations by detecting and processing only the changes in the visual scene. The machine-learned features are crafted to capture the unique characteristics of the event-camera data, enhancing the accuracy of the trajectory reconstruction. The inference pipeline is composed of a module repeated twice in sequence, formed by a Squeeze-and-Excite block and a ConvLSTM block with residual connection; it is followed by a final convolutional layer that provides the trajectories of the corners as a sequence of heatmaps. In the experimental part, a sequence of images w...File | Dimensione | Formato | |
---|---|---|---|
150.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
990.17 kB
Formato
Adobe PDF
|
990.17 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.