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Abstract. This paper presents a machine learned feature detector targeted to event-camera based 
visual odometry methods for unmanned aerial vehicles trajectory reconstruction. The proposed 
method uses machine-learned features to enhance the accuracy of the trajectory reconstruction. 
Traditional visual odometry methods suffer from poor performance in low light conditions and 
high-speed motion. The event-camera-based approach overcomes these limitations by detecting 
and processing only the changes in the visual scene. The machine-learned features are crafted to 
capture the unique characteristics of the event-camera data, enhancing the accuracy of the 
trajectory reconstruction. The inference pipeline is composed of a module repeated twice in 
sequence, formed by a Squeeze-and-Excite block and a ConvLSTM block with residual 
connection; it is followed by a final convolutional layer that provides the trajectories of the corners 
as a sequence of heatmaps. In the experimental part, a sequence of images was collected using an 
event-camera in outdoor environments for training and test. 
Introduction 
Bio-inspired systems are becoming increasingly widespread in the field of robotics. The 
advantages are related to the reduced use of resources, both in terms of power consumption and 
computational load. In terms of perception, Event-based vision sensors, such as Dynamic Vision 
Sensor (DVS) devices represent one of the intriguing advancements in image sensor technology. 
These devices incorporate in-pixel circuitry that can detect temporal changes in intensity and 
communicate these changes as binary "events" to the external world. Essentially, only the pixels 
that detect changes in light intensity transmit data, enabling data compression at the sensor level 
and facilitating low-latency operations. This is made possible because individual pixel changes 
can be transmitted without the need to read out full frame image frames [1]. Event-based cameras 
offer significant advantages over traditional cameras. Latency, which is the time delay in 
processing sensor data, is a critical factor, event-based cameras drastically reduce latency by 
transmitting data through events, which have microsecond-level latencies. Furthermore, event-
based cameras possess a remarkably high dynamic range of 130 dB compared to the 60 dB range 
of standard cameras. This makes them well-suited for scenes with substantial illumination changes.  

Certainly, one of the most promising applications for this type of camera is in the navigation of 
highly agile robots such as drones [2], as well as for the aspects of entry, descent, and landing of 
planetary probes [3]. To utilize these sensors for such purposes, it is necessary to adapt or invent 
new algorithms for Visual Odometry (VO). This ensures that the cameras can effectively support 
the navigation and mapping tasks required in these dynamic scenarios. 
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For VO, it is crucial to have keypoints that are repeatable and accurate across consecutive 
frames. Currently, there are handcrafted methods inspired by classical computer vision theory that 
allow the extraction of a series of features, such as the eHarris-based approach [3]. Inspired by the 
work of [4], we have chosen to utilize machine-learned features that exhibit a certain level of 
temporal stability. In this work, we present the method for training these machine-learned features, 
demonstrate how to integrate them into a visual odometry system, and showcase some preliminary 
results. 
Method  
The adopted event keypoint detection method is adapted from work of [4] and is based on receiving 
an event tensor (also called event cube) 𝐸𝐸(𝑥𝑥,𝑦𝑦, 𝑡𝑡) of dimension 𝐻𝐻 × 𝑊𝑊 × 𝐵𝐵 as input and predicts 
a set of heatmaps as keypoint location. Regarding the event tensor input, H and W represent the 
height and width of the image sensor, respectively, and B indicates the number of temporal bins, 
which is 12 in our case. Generation of the event tensor involves several steps: as first the change 
in light 𝐿𝐿𝑥𝑥𝑥𝑥,𝑖𝑖 at pixel (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) crosses a threshold, a spike is generated; then the event camera outputs 
a spike stream with coordinates (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)  and timestamp 𝑡𝑡𝑖𝑖, finally event stream is converted into 
an event tensor by considering an integration period ∆t.  

 

 
 

Figure 1 Event tensor generation: (a) when the change in light 𝑳𝑳𝒙𝒙𝒙𝒙,𝒊𝒊 pixel (𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊) crosses a 
threshold a spike is generated, (b) the event camera outputs a spike stream in time 𝒕𝒕𝒊𝒊 and space 
(𝒙𝒙𝒊𝒊,𝒚𝒚𝒊𝒊), (c) the event stream is converted in an event tensor considering and integration period 
∆𝒕𝒕. (d) Event tensor 𝑬𝑬(𝒙𝒙,𝒚𝒚, 𝒕𝒕) used for detector training, the training points are detected using 

Harris on grayscale frame and interpolating their position on the event frames. 
The event tensor E(x, y, t) is utilized for detector training, where training points are detected 

using Harris on grayscale frames and then their positions are interpolated between two consecutive 
event frames and filtered based on epipolar constraint. The whole event tensor generation and 
training point selection is depicted in Figure 1. 

The loss function is based on the Binary Cross Entropy (BCE) between the predicted heatmaps 
ℋℎ(𝑥𝑥,𝑦𝑦) and the interpolated keypoints positions ℋ�ℎ(𝑥𝑥,𝑦𝑦): 

 
ℒ = � � BCE(ℋℎ(𝑥𝑥, 𝑦𝑦),ℋ�ℎ(𝑥𝑥, 𝑦𝑦))

(𝑥𝑥,𝑦𝑦)ℎ∈[1,𝑛𝑛ℎ]

 ( 1 ) 

 
The first sum is over the 𝑛𝑛ℎ predicted heatmaps. The second sum is over the image locations 

(x, y). The neural network architecture used in this work is based on [5] and consists of a fully 
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convolutional network with five layers, each utilizing 3x3 kernels. Each layer has 12 channels and 
incorporates residual connections. ConvLSTMs are employed in the second and fourth layers. The 
final layer, responsible for heatmap prediction, is a conventional convolutional layer. The 
remaining feed-forward layers utilize Squeeze-Excite (SE) connections. The training parameters 
are given in Table 1. 

Table 1 Training parameters. 
Num epochs Learning rate Num ev cubes Num ev Num keypoints Num keypoint/ev 

frame (avg) 

40 0.0001 6750 13.5*10^6 5442164 67.187 
 
Results  

 

 
Figure 2 (a-c) Events frames obtained from the integration of 2000 events. (d.e) Corresponding 
RGB images of keypoints extracted from the respective event frames using the machine-learned 

detector (red) and a handcrafted feature detector such as eHarris (green). 
To gather the frames and events required for training, sequences of images were collected in 

both outdoor and indoor environments. The DAVIS 346 camera from Inivation was employed for 
the acquisitions. The DAVIS 346 camera is a DVS event camera with a resolution of 346 x 260 
pixels and includes an active pixel frame sensor. Figure 2 shows the event frames obtained from 
the integration of 2000 events and the corresponding RGB images with the detected keypoints. 
During the testing phase, the event cubes were provided as input to the machine-learned detector 
to extract the corresponding peak heatmaps. To verify the stability of the keypoints, a Nearest 
Neighbor (NN) algorithm was employed to track the keypoints in subsequent event frames. Figure 
3 shows the graphs depicting the number of keypoints extracted, matched (between two 
consecutive frames using NN and filtered with RANSAC), and tracked (i.e., keypoints that, after 
being merged into tracks, belong to a track spanning at least 20 event frames). 
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Figure 3 Detected, matched and tracked keypoints for the event stream collected outdoor.  

Conclusions  
In this work, the initial steps have been taken towards utilizing an event camera for the autonomous 
navigation of highly agile robots such as drones and entry descent and landing probes. The training 
of a stable keypoints detector across consecutive frames has been conducted. In future work, we 
will integrate this keypoint detector into a Visual Odometry pipeline and test the system on a 
tethered balloon. 
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