ALS is a severe chronic disease characterized by a progressive but variable impairment of neurological functions, characterized by high heterogeneity both in presentation features and rate of disease progression. As a consequence patients’ needs are different, challenging both caregivers and clinicians. Indeed, the time of relevant events is variable, which is associated with uncertainty regarding the opportunity of critical interventions like non-invasive ventilation and gastrostomy, with implications on the quality of life of patients and their caregivers. For this reason, clinicians need tools able to support their decision in all phases of disease progression and underscore personalized therapeutic decisions. The goal of iDPP CLEF is to design and develop an evaluation infrastructure for AI algorithms able to: 1. better indicate intervention time; 2. stratify patients according to their phenotype and rate of disease progression; 3. predict progression rate in a probabilistic, time dependent fashion. The participation in iDPP CLEF was satisfactory, hinting at the interest of the community concerning the task. More so, the solutions identified by participants range over several different techniques and provided valid input to such a highly relevant domain as the prediction of the ALS progression.

Overview of iDPP@CLEF 2022: The Intelligent Disease Progression Prediction Challenge

Guazzo A.;Trescato I.;Longato E.;Hazizaj E.;Dosso D.;Faggioli G.;Di Nunzio G. M.;Silvello G.;Vettoretti M.;Tavazzi E.;Roversi C.;Fariselli P.;Birolo G.;Di Camillo B.;Ferro N.
2022

Abstract

ALS is a severe chronic disease characterized by a progressive but variable impairment of neurological functions, characterized by high heterogeneity both in presentation features and rate of disease progression. As a consequence patients’ needs are different, challenging both caregivers and clinicians. Indeed, the time of relevant events is variable, which is associated with uncertainty regarding the opportunity of critical interventions like non-invasive ventilation and gastrostomy, with implications on the quality of life of patients and their caregivers. For this reason, clinicians need tools able to support their decision in all phases of disease progression and underscore personalized therapeutic decisions. The goal of iDPP CLEF is to design and develop an evaluation infrastructure for AI algorithms able to: 1. better indicate intervention time; 2. stratify patients according to their phenotype and rate of disease progression; 3. predict progression rate in a probabilistic, time dependent fashion. The participation in iDPP CLEF was satisfactory, hinting at the interest of the community concerning the task. More so, the solutions identified by participants range over several different techniques and provided valid input to such a highly relevant domain as the prediction of the ALS progression.
2022
CEUR Workshop Proceedings
2022 Conference and Labs of the Evaluation Forum, CLEF 2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact