This work proposes to exploit functional redundancy as a tool to enhance the energy efficiency of a robotic system. In a functionally redundant system, i.e., one in which the number of degrees of freedom required to complete the task is smaller than the number of available degrees of freedom, the motion of the extra degrees of freedom can be tailored to enhance a performance metric. This work showcases a method that can be used to effectively enhance the energy efficiency through motion design, using a detailed dynamic model of the UR5 serial robot arm. The method is based on an optimization of the motion profile, using a parametrized description of the end-effector orientation: the results showcase an increased efficiency that allows energy savings up to 20.8%, according to the energy consumption results according to the electro-mechanical dynamic model of the robot.

Energy optimization of functionally redundant robots through motion design

Boscariol P.
;
Caracciolo R.;Richiedei D.;Trevisani A.
2020

Abstract

This work proposes to exploit functional redundancy as a tool to enhance the energy efficiency of a robotic system. In a functionally redundant system, i.e., one in which the number of degrees of freedom required to complete the task is smaller than the number of available degrees of freedom, the motion of the extra degrees of freedom can be tailored to enhance a performance metric. This work showcases a method that can be used to effectively enhance the energy efficiency through motion design, using a detailed dynamic model of the UR5 serial robot arm. The method is based on an optimization of the motion profile, using a parametrized description of the end-effector orientation: the results showcase an increased efficiency that allows energy savings up to 20.8%, according to the energy consumption results according to the electro-mechanical dynamic model of the robot.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3347229
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 12
social impact