Digital twins of industrial and collaborative robots are widely used to evaluate and predict the behavior of manipulators under different control strategies. However, these digital twins often employ simplified mathematical models that do not fully describe their dynamics. In this paper, we present the design of a high-fidelity digital twin of a six degrees-of-freedom articulated robot using Simscape Multibody, a Matlab toolbox that allows the design of robotic manipulators in a rather intuitive and user-friendly manner. This robot digital twin includes joint friction, transmission gears, and electric actuators dynamics. After assessing the dynamic accuracy of the Simscape model, we used it to test a computed torque control scheme, proving that this model can be reliably used in simulations with different aims, such as validating control schemes, evaluating collaborative functions or minimizing power consumption.

Designing Digital Twins of Robots Using Simscape Multibody

Boschetti G.;Sinico T.
2024

Abstract

Digital twins of industrial and collaborative robots are widely used to evaluate and predict the behavior of manipulators under different control strategies. However, these digital twins often employ simplified mathematical models that do not fully describe their dynamics. In this paper, we present the design of a high-fidelity digital twin of a six degrees-of-freedom articulated robot using Simscape Multibody, a Matlab toolbox that allows the design of robotic manipulators in a rather intuitive and user-friendly manner. This robot digital twin includes joint friction, transmission gears, and electric actuators dynamics. After assessing the dynamic accuracy of the Simscape model, we used it to test a computed torque control scheme, proving that this model can be reliably used in simulations with different aims, such as validating control schemes, evaluating collaborative functions or minimizing power consumption.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3570325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact