: A novel hydrogel scaffold for bone regeneration based on chitosan, selected for its biocompatibility, biodegradability, and antimicrobial properties, was covalently functionalized with a bioactive peptide from bone morphogenetic protein-2 (BMP-2) to guide osteoblast growth and proliferation. This study evaluates the impact of incorporating different concentrations (8, 16, or 24% wt/wt) of plant-based micro-fibrillated cellulose or tunicate nanocellulose to improve the mechanical and biological properties of peptide-grafted chitosan hydrogel matrices. While the mechanical properties of the matrices increase with increasing cellulose content, regardless of its source, the behavior of human osteoblasts used in biological tests discriminates between the two types of cellulose and shows better results (proliferation at 2 and 7 days, and mineralization) for the enrichment with tunicate cellulose.
Comparative Analysis of Tunicate vs. Plant-Based Cellulose in Chitosan Hydrogels for Bone Regeneration
Furlan, Laura;Zamuner, Annj;Sabbadin, Giacomo;Russo, Teresa;Manni, Lucia;Ballarin, Loriano;Schievano, Elisabetta;Dettin, Monica
2025
Abstract
: A novel hydrogel scaffold for bone regeneration based on chitosan, selected for its biocompatibility, biodegradability, and antimicrobial properties, was covalently functionalized with a bioactive peptide from bone morphogenetic protein-2 (BMP-2) to guide osteoblast growth and proliferation. This study evaluates the impact of incorporating different concentrations (8, 16, or 24% wt/wt) of plant-based micro-fibrillated cellulose or tunicate nanocellulose to improve the mechanical and biological properties of peptide-grafted chitosan hydrogel matrices. While the mechanical properties of the matrices increase with increasing cellulose content, regardless of its source, the behavior of human osteoblasts used in biological tests discriminates between the two types of cellulose and shows better results (proliferation at 2 and 7 days, and mineralization) for the enrichment with tunicate cellulose.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.