This study utilized a circular economy approach to convert unripe rice, a low-cost by-product of the rice milling industry, into biofuels using a biorefinery process. The recombinant yeast Saccharomyces cerevisiae ER T12.7 strain was tested for its ability to produce ethanol from unripe rice. In hydrolysis trials with 20 % (dw/v) unripe rice, ER T12.7 showed superior saccharification yields comparable to the commercial enzyme, STARGENTM 002. In 1-L bioreactor tests, ER T12.7 produced ethanol as efficiently as the parental ER V1 strain under simultaneous saccharification and fermentation conditions. The spent fermentation broth from both amylolytic strains was evaluated for biomethane production, achieving high yields of up to 373.61 mL CH4/g volatile solids. This research is the first to demonstrate process integration to produce ethanol and methane from rice waste sequentially, highlighting the potential of unripe rice in biorefining for a circular economy.

Integrated production of bioethanol and biomethane from rice waste using superior amylolytic recombinant yeast

Gupte A. P.;Agostini S.;Basaglia M.;Casella S.;Favaro L.
2025

Abstract

This study utilized a circular economy approach to convert unripe rice, a low-cost by-product of the rice milling industry, into biofuels using a biorefinery process. The recombinant yeast Saccharomyces cerevisiae ER T12.7 strain was tested for its ability to produce ethanol from unripe rice. In hydrolysis trials with 20 % (dw/v) unripe rice, ER T12.7 showed superior saccharification yields comparable to the commercial enzyme, STARGENTM 002. In 1-L bioreactor tests, ER T12.7 produced ethanol as efficiently as the parental ER V1 strain under simultaneous saccharification and fermentation conditions. The spent fermentation broth from both amylolytic strains was evaluated for biomethane production, achieving high yields of up to 373.61 mL CH4/g volatile solids. This research is the first to demonstrate process integration to produce ethanol and methane from rice waste sequentially, highlighting the potential of unripe rice in biorefining for a circular economy.
2025
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960852424016511-main.pdf

accesso aperto

Descrizione: pubblicato
Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3542474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 2
social impact