Many cognitive processes, ranging from perception to action, depend on the ability to predict the timing of forthcoming events. Yet, how the brain uses predictive models in the temporal domain is still an unsolved question. In previous work, we began to explore the neural correlates of temporal predictions by using a computational approach in which an ideal Bayesian observer learned the temporal probabilities of target onsets in a simple reaction time task. Because the task was specifically designed to disambiguate updating of predictive models and surprise, changes in temporal probabilities were explicitly cued. However, in the real world, we are usually incidentally exposed to changes in the statistics of the environment. Here, we thus aimed to further investigate the electroencephalographic (EEG) correlates of Bayesian belief updating and surprise associated with incidental learning of temporal probabilities. In line with our previous EEG study, results showed distinct P3-like modulations for updating and surprise. While surprise was indexed by an early fronto-central P3-like modulation, updating was associated with a later and more posterior P3 modulation. Moreover, updating was associated with a P2-like potential at centro-parietal electrodes, likely capturing integration processes between prior beliefs and likelihood of the observed event. These findings support previous evidence of trial-by-trial variability of P3 amplitudes as an index of dissociable inferential processes. Coupled with our previous findings, the present study strongly bolsters the view of the P3 as a key brain signature of temporal Bayesian inference. Data and scripts are shared on OSF: osf.io/sdy8j/.

P3-like signatures of temporal predictions: a computational EEG study

Visalli A.
;
Ambrosini E.;Vallesi A.
2023

Abstract

Many cognitive processes, ranging from perception to action, depend on the ability to predict the timing of forthcoming events. Yet, how the brain uses predictive models in the temporal domain is still an unsolved question. In previous work, we began to explore the neural correlates of temporal predictions by using a computational approach in which an ideal Bayesian observer learned the temporal probabilities of target onsets in a simple reaction time task. Because the task was specifically designed to disambiguate updating of predictive models and surprise, changes in temporal probabilities were explicitly cued. However, in the real world, we are usually incidentally exposed to changes in the statistics of the environment. Here, we thus aimed to further investigate the electroencephalographic (EEG) correlates of Bayesian belief updating and surprise associated with incidental learning of temporal probabilities. In line with our previous EEG study, results showed distinct P3-like modulations for updating and surprise. While surprise was indexed by an early fronto-central P3-like modulation, updating was associated with a later and more posterior P3 modulation. Moreover, updating was associated with a P2-like potential at centro-parietal electrodes, likely capturing integration processes between prior beliefs and likelihood of the observed event. These findings support previous evidence of trial-by-trial variability of P3 amplitudes as an index of dissociable inferential processes. Coupled with our previous findings, the present study strongly bolsters the view of the P3 as a key brain signature of temporal Bayesian inference. Data and scripts are shared on OSF: osf.io/sdy8j/.
File in questo prodotto:
File Dimensione Formato  
VisallietalExpBrainRes2023.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF Visualizza/Apri   Richiedi una copia
VisallietalExpBrainResPrePrint2023.pdf

accesso aperto

Descrizione: versione degli autori pre-pubblicazione già presente su psyarxiv
Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 604.37 kB
Formato Adobe PDF
604.37 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3499700
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact