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ABSTRACT 

Many cognitive processes, ranging from perception to action, depend on the ability to predict 

the timing of forthcoming events. Yet, how the brain uses predictive models in the temporal 

domain is still an unsolved question. In previous work, we began to explore the neural 

correlates of temporal predictions by using a computational approach in which an ideal 

Bayesian observer learned the temporal probabilities of target onsets in a simple reaction time 

task. Because the task was specifically designed to disambiguate updating of predictive 

models and surprise, changes in temporal probabilities were explicitly cued. However, in the 

real world, we are usually incidentally exposed to changes in the statistics of the environment. 

Here, we thus aimed to further investigate the electroencephalographic (EEG) correlates of 

Bayesian belief updating and surprise associated with incidental learning of temporal 

probabilities. In line with our previous EEG study, results showed distinct P3-like modulations 

for updating and surprise. While surprise was indexed by an early fronto-central P3-like 

modulation, updating was associated with a later and more posterior P3 modulation. 

Moreover, updating was associated with a P2-like potential at centro-parietal electrodes, likely 

capturing integration processes between prior beliefs and likelihood of the observed event. 

These findings support previous evidence of trial-by-trial variability of P3 amplitudes as an 

index of dissociable inferential processes. Coupled with our previous findings, the present 

study strongly bolsters the view of the P3 as a key brain signature of temporal Bayesian 

inference. Data and scripts are shared on OSF: osf.io/sdy8j/ 

 

Keywords: temporal predictions; Bayesian brain; P3; Kullback-Leibler divergence, Shannon 

information; hazard rate 
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1. Introduction 

Predicting the timing of forthcoming events is crucial to optimize brain processes that range 

from perception to action. Temporal expectations can be computationally formalized in terms 

of the hazard function, which is defined as the conditional probability that an event will occur 

given that it has not yet occurred (Niemi & Näätänen, 1981; Nobre & van Ede, 2018). It follows 

that temporal expectations are encoded on the basis of both prior beliefs about event timing 

and the information inherent in elapsed time. Previous studies employing multiple probability 

distributions of foreperiods (FP; i.e., the time intervals between a ready signal and the 

presentation of the target stimulus) showed that the brain tracks the probability of target onset 

as time elapses (Bueti et al., 2010; Herbst et al., 2018; Meindertsma et al., 2018). Further 

extending this line of research, we started to investigate how FP distributions are inferred by 

the brain, an issue that has been less explored.  

To fill that gap, we combined a Bayesian computational approach with functional magnetic 

resonance imaging (fMRI) (Visalli et al., 2019) and electroencephalography (EEG) (Visalli et 

al., 2021) to elucidate the neural correlates of temporal belief updating. Crucially, since 

measures of belief updating (e.g., Kullback-Leibler divergence, DKL) are often confounded with 

measures of surprise (e.g., Shannon information, IS), our studies adapted a task manipulation 

from O’Reilly and colleagues (2013) that allowed us to differentiate updating and surprise 

correlates (see Baldi & Itti, 2010; Itti & Baldi, 2009 for a deeper discussion on the difference 

between updating and surprise measures). Briefly, our previous fMRI study identified two 

networks in part distinctly associated with updating and surprise: the fronto-parietal network, 

which was mainly involved in updating prior beliefs about target timing, and the cingulo-

opercular network, which was related to the surprise elicited by target onset (Visalli et al., 

2019). Moreover, our previous EEG study successfully isolated two dissociable P3-like 

modulations specifically indexing belief updating and surprise about the timing of events 

(Visalli et al., 2021). 

To disentangle updating and surprise, we capitalized on a color manipulation (O’Reilly et al., 

2013), in which changes in the current FP distribution were explicitly signaled. More in detail, 

in both of our previous studies, participants had to respond to target onsets that were 

separated from an uninformative ready signal by variable FPs. In the majority of trials 

(predictable trials), FP durations were sampled from a Gaussian distribution with constant 

mean and standard deviation (SD) during a block of trials. Means and SDs changed abruptly 

between blocks of trials. The key manipulation was that blocks were not temporally separated, 

but participants were explicitly instructed that a change in target color signaled the beginning 

of a new block (updating trials). On a few trials (uniform trials), interspersed with the other 
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trials, FP durations were sampled from a uniform distribution. Importantly, uniform targets were 

always white, signaling that the current trial was not igniting a new block. This color 

manipulation allowed us to create two types of highly surprising events, updating and uniform 

trials, with only the former ones requiring updating.  

While in our previous studies the need of updating was explicitly signaled to experimentally 

tease apart updating and surprise, belief updating in a Bayesian sense is usually incidentally 

accomplished in everyday life. In this regard, it has been shown that cued and incidental 

inferential processes are differently encoded by the brain (e.g., Pearson et al., 2011; Yu & 

Dayan, 2005). This point raises the possibility that our results might not truly reflect Bayesian 

inference but, rather, a sort of all-or-none shift in beliefs (Nassar, Wilson, Heasly, & Gold, 

2010) caused by the color manipulation. Addressing this issue is, thus, critical to substantiate 

(or, alternatively, circumscribe) our previous conclusions.  

The present study aimed to investigate electrophysiological correlates underlying incidental 

Bayesian updating of temporal expectations. To this aim, we employed the same task as in 

our previous EEG study (Visalli et al., 2021), but without the color manipulation. Moreover, as 

detailed below, participants were not informed about the probabilistic structure of the task.  

Our previous EEG study showed that surprise and updating acted on both early and late 

processing stages. The modulation of later components was in line with the literature (Kolossa 

et al., 2013, 2015; Mars et al., 2008) confirming that the P3 is sensitive to inferential processes 

(Kopp, 2008). In contrast, we could not draw firm conclusions on the specific role of earlier 

components. This was due to the fact that, since processing of color cues necessarily affected 

early components, it was not clear whether such event-related potentials (ERPs) truly encoded 

probabilistic information or they were just involved in color processing. Testing this issue is 

crucial to pinpoint the difference between cued and incidental inferential processes and to 

better interpret the results of our previous study. 

To sum up, here we tried to gain further insight into the inferential mechanisms underlying 

temporal expectations when they are incidentally accomplished, thus, extending our previous 

work on cued temporal inferential processes.  

 

2. Methods 

2.1 Participants 
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This study included a sample of 28 participants [17 females; mean age: 24.5 years (SD = 4 

years), range: 19-33 years; mean years of education: 16.1 (SD = 2.4)]. All of them were right-

handed [Edinburgh Handedness Inventory (Oldfield, 1971) average score: 82.7 (SD = 19), 

range: 40-100], had normal color vision and normal or corrected-to-normal visual acuity, and 

reported no history of neurological or psychiatric disorders. The procedures involved in this 

study were approved by the Bioethical Committee of the Azienda Ospedaliera di Padova. 

Participants gave their written informed consent before the experiment, in accordance with the 

Declaration of Helsinki, and were reimbursed 20 euros for their time. 

 

2.2 Task and procedure 

The experimental paradigm (Figure 1) was the same variable FP task as in Visalli and 

colleagues (2021), except for the target color that was always black. Participants were 

uninformed about the temporal structure or the probabilistic nature of the task. They were only 

instructed to respond as fast as possible to the onset of the target (a black circle displayed 

centrally against a gray background for 1000 ms). The target was separated from the onset of 

a neutral warning signal (a centrally displayed black fixation cross) by a variable FP duration. 

The inter-trial interval was randomly jittered between 1250 and 1750 ms (rectangular 

distribution). Participants responded by pressing the spacebar with their index finger (half of 

the participants used their right hand, whereas the other half their left hand). 

The sequence of events was the same as in our previous study (Visalli et al., 2021). The task 

was divided in 73 blocks (the first block was used in computational modeling but excluded 

from the inferential analyses), each one including a number of trials ranging between 8 and 

13 (mean: 10.5). Blocks were not temporally separated and transition between them was not 

signaled. In most trials (80% of 790 trials) the FP duration was drawn from a Gaussian 

distribution whose mean and SD was constant during a block of trials. Gaussian parameters, 

which changed between blocks, were derived from an orthogonal combination of 9 means 

(500, 700, 900, 1100, 1300, 1500, 1700, 1900, and 2100 ms) and 8 SDs (25, 50, 75, 100, 125, 

150, 175 and 200 ms). In half of the blocks, the Gaussian distribution had a mean at least 3 

SD higher than the previous one, whereas in the other half it was at least 3 SD lower. In the 

remaining 20% of trials, FP durations were drawn from a uniform distribution ranging from 250 

to 2500 ms (half of them had a FP below the mean of the Gaussian distribution of the current 

block and the other half above). The task was divided in four runs with self-paced breaks in 

between. Each new run started with either 8 or 9 trials with the same FP distribution as that 

used in the last block of the previous run (these trials were discarded from statistical analyses). 
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The task was implemented in MATLAB (The MathWorks, Inc., Natick, Massachusetts, United 

States) using the PSYCHOPHYSICS TOOLBOX 3 (Brainard, 1997; Kleiner et al., 2007). 

 

Figure 1 | (A) Schematic of a typical trial. Participants had to respond to target onsets that were 

separated from a neutral warning signal by variable foreperiod (FP) durations. Trials were separated by 

an inter-trial interval (ITI) drawn from a uniform distribution ranging from 1250 to 1750 ms. (B) FP 

durations in one hundred exemplary trials. On 80% of the trials, target onsets occurred after a FP 

(black dots) drawn from a Gaussian distribution, whose mean (solid blue line) and standard deviation 

(blue bands) were kept constant within a block. Transitions between blocks were not signaled. On 20% 

of the trials, targets occurred after a FP extracted from a uniform distribution. 

 

2.3 Ideal Bayesian learner  

Measures of updating and surprise were computed on the basis of a computational model that 

estimates, on a trial-by-trial basis, the posterior probability of putative pairs of µ (i.e., mean) 

and σ (i.e., SD) parameters of the Gaussian distribution from which FPs are drawn. The model 

is a modified version of the one used in our previous studies (Visalli et al., 2019, 2021; see 

O’Reilly et al., 2013), which takes into account not only differences in the paradigm and the 

participants’ knowledge about the task (i.e., different task instructions), but also the long-term 

trial-wise accumulation of evidence and memory constraints. Namely, in the previous 

paradigm, after the change in the target color, participants could discard the information 

carried out by the previous trials since this was no longer useful to infer the new, current FP 
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distribution. Moreover, participants were instructed not to update beliefs after an FP drawn 

from the uniform distribution. Conversely, in the present study, participants were exposed to 

a long series of FPs that was experienced as a unique sequence throughout the task and 

without explicit differences being signaled between updating, uniform and predictable trials.  

The absence of a cued transition between blocks implied that, at a given trial n, all the 

observations from 1 to n were available for estimating the posterior, thus, raising the question 

of to what extent previous observations are used for estimation. For example, it could be 

possible that all past events concur in the estimation, with an equal weight for distant and 

recent observations. However, several studies have shown that the brain integrates past 

experience according to a temporal gradient over past observations (Harrison et al., 2011). 

For instance, in the classical oddball paradigm (N. K. Squires et al., 1975), the recent trial 

history appears to influence the P3b amplitude to a greater extent than the remote history (K. 

C. Squires et al., 1976). More recently, Kolossa and colleagues (2013) implemented a model 

of trial-by-trial P3 fluctuations in a simple two-choice response time (RT) task, which takes into 

account both short-term and long-term memory decay processes. Since this model provided 

a superior account of P3b amplitude with respect to other previous P3b models, we supplied 

our model with those two short-term and long-term memory forgetting factors. 

Let us call 

 𝑃𝐹𝑃(𝑛) = 𝑃(𝐹𝑃 ∼ ℵ(𝜇, 𝜎)|𝐹𝑃1:𝑛)  (1) 

the estimated FP posterior probability over the parameter space ℵ(𝜇, 𝜎) on trial n (the 

parameter space had a size of 150×50, that is, the combination of all the means from 20 to 

3000 ms and SDs from 20 to 1000 ms in steps of 20 ms). Based on Kolossa and colleagues 

(2013), the posterior can be expressed as: 

 𝑃𝐹𝑃(𝑛) = 𝛼𝐿 ⋅ 𝑃𝐿,𝐹𝑃(𝑛) + 𝛼𝑆 ⋅ 𝑃𝑆,𝐹𝑃(𝑛)  (2) 

that is, the weighted sum of posteriors estimated according to long-term (PL, FP) and short-term 

(PS, FP) decaying memories about prior observations. The weighting parameters αL and αS 

represent the relative contributions of PL,FP and PS,FP in forming the posterior, and they hold αS 

= 1 - αL and 0 ≤ αL ≤ 1. Both posteriors were computed as: 

 𝑃𝑖,𝐹𝑃(𝑛) = 𝑃𝑖,𝐹𝑃(𝑛 − 1)𝛾𝑖 ⋅ 𝐿𝐹𝑃(𝑛), 𝑖 ∈ [𝐿, 𝑆]  (3) 

where LFP(n) is the likelihood 𝑃(𝐹𝑃𝑛|𝐹𝑃 ∼ ℵ(𝜇, 𝜎)) at trial n (see Visalli et al., 2021, for further 

details), and 𝑃𝑖,𝐹𝑃(𝑛 − 1)𝛾𝑖 is the power prior (Ibrahim et al., 2015) 𝑃(𝐹𝑃 ∼

ℵ(𝜇, 𝜎)|𝐹𝑃1:𝑛−1) (see Visalli et al., 2021, for further details) raised to the power γi, which 
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represents the exponential forgetting factor of the long-term (γL) or short-term (γS) decaying 

memories. From Kolossa and colleagues (2013), the short-term and long-term decay factors 

were respectively defined as: 

 𝛾𝑆 = 𝑒−1/𝛽𝑆     &    𝛾𝐿 = 𝑒−1/𝛽𝐿,𝑛  (4) 

Both forgetting factors are exponential, and only the long-term memory depends on the trial 

number n as follows: 

 𝛽𝐿,𝑛 = 𝑒−(𝑛⋅1/𝜏1+1/𝜏2)  (5) 

This aspect determines that forgetting becomes much sharper when the number of trials 

increases (see Kolossa et al., 2013). 

Posteriors were, then, translated from the parameter space over time (see Visalli et al., 2021), 

as follows: 

 𝑃𝑖,𝐹𝑃(𝑛) =  𝛴𝑗,𝑘𝑃(𝐹𝑃𝑛| 𝐹𝑃𝑛 ∼ ℵ(𝜇𝑗 , 𝜎𝑘)) × 𝑃(𝐹𝑃𝑛 ∼ ℵ(𝜇𝑗, 𝜎𝑘)|𝐹𝑃1:𝑛) (6) 

 

The values for the model parameters, αL, τ1, τ2, and βS, were identified by finding the parameter 

combination that better explained participants’ RTs (see Section 2.5) in terms of Akaike 

information criterion (AIC). This parameter optimization was performed using the MATLAB 

fmincon function (Table 1 provides an overview of the searched parameter space; see Table 

1 in Kolossa et al., 2013). 

Since Meyniel and colleagues (2016) observed that a single forgetting parameter had a better 

fitting as compared to the forgetting parameters by Kolossa and colleagues (2013), we 

implemented a second model, in which the posterior probability over the parameter space on 

trial n was computed as follows: 

 𝑃𝐹𝑃(𝑛) = 𝑃𝑖,𝐹𝑃(𝑛 − 1)𝑒−(𝑛−1)/𝜔
⋅ 𝐿𝐹𝑃(𝑛)  (7) 

In (7), we used a single forgetting parameter γ = e^(-(n-1)/ω) (see, Meyniel et al., 2016), with 

ω optimized as described above (searched parameter space went from 1 to the number of 

trials in the task, i.e., 790). The first model with two forgetting factors (Equations 3-5) and the 

second model variant with a single forgetting factor (Equation 7) were then compared in terms 

of AIC in explaining RTs as in Equation 12 (see Section 2.5). Since the first model was 

considerably better (AIC of model 1 = -344.88; AIC of model 2 = -232.44; please note that 

lower AIC scores indicate a better fit), all the presented analyses refer to first model. 
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The above-described Bayesian learner was chosen to be as similar as possible to the one 

employed in our previous studies (Visalli et al., 2019, 2021), in order to facilitate between-

study comparisons. Nonetheless, it has been often shown that in volatile environments (i.e., 

with abrupt changes at random points in time), the learning rate is influenced by the estimated 

volatility of the environment (Behrens et al., 2007; Liakoni et al., 2021; Nassar et al., 2010). 

For this reason, in the present study, we also applied the Hierarchical Gaussian filter (HGF; 

Mathys et al., 2011), a generic hierarchical Bayesian model frequently used to model beliefs 

in learning tasks under volatility. Details on the HGF implementation are presented as 

Supplementary Information along with HGF-based EEG results. 

 

 2.4 Model-based measures of updating and surprise 

Trial-wise measures of updating and surprise were calculated with reference to the described 

Bayesian learner (see supplementary Figure S3). As mentioned in the Introduction, updating 

was quantified in terms of the Kullback-Leibler divergence (DKL) between prior and posterior 

on each trial (Itti & Baldi, 2009): 

 𝐷𝐾𝐿(𝑛) = ∑ 𝑃𝐹𝑃(𝑛 − 1) ⋅ 𝑙𝑜𝑔
𝑃𝐹𝑃(𝑛−1)

𝑃𝐹𝑃(𝑛)
 3000

𝐹𝑃=10  (8) 

Concerning surprise, it was quantified in terms of the Shannon information (IS; Itti & Baldi, 

2009), that is, the negative log value of the probability of the observed event. Specifically, 

since during a trial of a variable FP task the prior probability of FP duration changes as a 

function of the elapse of time (i.e., hazard function), surprise on each trial was computed as: 

 𝐼𝑆(𝑛) = −𝑙𝑜𝑔 ℎ(𝐹𝑃𝑛)  (9) 

where, h(FPn) is the hazard rate of the observed FP duration at trial n, which is specified as: 

 ℎ(𝐹𝑃𝑛) =
𝑃(𝐹𝑃𝑛|𝐹𝑃1:𝑛−1)

1−𝑃(𝐹𝑃<𝐹𝑃𝑛|𝐹𝑃1:𝑛−1)
  (10) 

that is, the prior probability of target occurrence after the FP duration at trial n, divided by the 

probability that the target had not yet occurred after the FP at trial n. 

 

2.5 RT data analysis 

To find the best parameter combination for the Bayesian learner, log-transformed RTs (log-

RTs) were analyzed by means of Linear Mixed Models (LMM) using the fitlme function in 
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MATLAB. Data from the initial familiarization block and the beginning of each new run (see 

Section 2.2), along with data from error trials (i.e., anticipated and/or missing response to the 

target; mean percentage: 2.3%, SD = 2.2%, range: 0.3-8.9%) and post-error trials were 

excluded from analyses. To find the best combination of model parameters for the Bayesian 

Learner (see above), log-RTs were analyzed using a minimal model (in order to speed-up 

computations) specified as the following Wilkinson-notation formula: 

 𝑙𝑜𝑔(𝑅𝑇) ∼ 𝐷𝐾𝐿 ∗ 𝐼𝑆 + (1|𝐼𝐷)  (11) 

In detail, the fixed part included DKL and IS regressors (and their interaction) obtained from the 

Bayesian learner with a specific combination of model parameters. These regressors were 

standardized using Z-score in order to facilitate model convergence. The random part included 

by-participant (ID) random intercepts. Using the iterative procedure described above, we 

looked for the parameter combination associated with the pair of DKL and IS regressors, which 

better explained log-RTs (i.e., which led to the LMM with the lowest AIC). 

The DKL and IS associated with the best parameter combination were used to reanalyze RT 

data as in our two previous studies (Visalli et al., 2019, 2021), as well as for the EEG data 

analysis (see below). First, a full LMM was specified using the lme4 library (Bates et al., 2015) 

in R (http://www.R-project.org/) as follows: 

 𝑙𝑜𝑔(𝑅𝑇) ∼ 𝑇𝑟𝑖𝑎𝑙 + 𝑃𝑟𝑒𝑅𝑇 + 𝐷𝐾𝐿 ∗ 𝐼𝑆 + (𝑇𝑟𝑖𝑎𝑙 + 𝑃𝑟𝑒𝑅𝑇 + 𝐷𝐾𝐿 + 𝐼𝑆|𝐼𝐷)  (12) 

In detail, in addition to DKL and IS and their interaction, we entered the rank-order of each trial 

(Trial) and the log-RT at the preceding trial (PreRT) as fixed-effect terms to control for the 

temporal dependencies between successive trials that generally need to be addressed when 

modeling RTs (Baayen & Milin, 2010). These continuous predictors were standardized using 

Z-score in order to facilitate model convergence. The random structure included correlated 

by-subject random intercepts and slopes for Trial, PreRT, IS and DKL. Model selection 

procedure from the full model to a minimal adequate model was conducted through the step 

function of the lmerTest R-library (Kuznetsova et al., 2017), which performs backwards 

elimination of non-significant random and fixed effects of LMM (Kuznetsova et al., 2015). 

 

2.6 EEG data acquisition and pre-processing 

The EEG was recorded using BrainAmp amplifiers (Brain Products, Munich, Germany) from 

64 Ag/AgCl electrodes mounted on an elastic cap (EASYCAP GmbH, Germany) according to 

the international 10-10-system. Electrooculographic activity was recorded through an 
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electrode placed under the right eye and was also monitored through the scalp electrodes 

placed in the proximity of both eyes. Before recording, impedance for all electrodes was 

checked and adjusted to be lower than 10 kΩ before testing. All electrodes were referenced 

to FCz during the recording, and an electrode positioned at AFz served as the ground. EEG 

activity was digitized at a sampling rate of 500 Hz. 

Pre-processing of the EEG signal was the same as in Visalli and colleagues (2021) and it was 

performed using custom MATLAB scripts including functions from the EEGLAB environment 

(version 14.1.2b; Delorme & Makeig, 2004). To perform independent component (IC) 

decomposition, a low-pass (cut-off frequency = 40 Hz, transition bandwidth = 20 Hz) and a 

high-pass (cut-off frequency = 2 Hz, transition bandwidth = 4 Hz) non-causal zero-phase 

Kaiser-windowed sinc FIR filters (beta = 5.6526) were applied to continuous data. The high 

cut-off for the high-pass filter was applied to remove low-frequency drifts in order to improve 

the ICA solution (Winkler et al., 2015). The clean_rawdata function was used to remove noisy 

channels (channel criterion = .8) and short-time bursts (burst criterion = 20 SD) from the data. 

A maximum of 4 channels per subject (mean = 0.75 channels, SD = 1.27) were removed. 

Then, the FastICA algorithm (Hyvärinen & Oja, 2000) was used for IC decomposition, and the 

obtained ICA solution was applied to EEG data filtered with a high-pass cut-off of 0.1 Hz 

(transition bandwidth = 0.2 Hz), since the previously applied 2-Hz cut-off may attenuate ERP 

effects and introduce distortions (Tanner et al., 2015). Subsequently, the EEGLAB plugin 

SASICA (Chaumon et al., 2015) guided the identification and exclusion of artifactual ICA 

components (e.g., blinks, eye movements, muscle activity, noisy channels). Finally, removed 

channels were interpolated using spherical splines and continuous EEG data were re-

referenced to the average of all of the EEG electrodes adding FCz channel back to the data. 

 

2.7 EEG inferential analyses 

As in Visalli and colleagues (2021), first-level (subject-specific) analysis was performed using 

the Unfold toolbox (Ehinger & Dimigen, 2019). This toolbox allowed us to perform regression-

based analyses of single-trial target-evoked EEG responses by (at least partially) 

disentangling overlapping responses from subsequent events (i.e., warning signal onset, 

target onset and response) through deconvolution. Deconvolution is very helpful in our 

paradigm to analyze the neural response associated with target onset. Indeed, targets 

appeared at different stages of FP processes due to the high variability of FP intervals. In other 

terms, ERP response to the warning signal differently affected target-related ERPs on the 

basis of FP durations and their predictability. Deconvolution helped us to face this problem by 
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(at least partially) isolating specific ERPs associated with target onset. Moreover, baseline 

correction as an EEG preprocessing step is still a matter of debate (Alday, 2019), especially 

in tasks with stimulus expectations or response preparation effects (Maess et al., 2016). 

Deconvolution methods are a way to face baseline correction in paradigms with overlapping 

responses to different events (Lütkenhöner, 2010). 

Events from error and post-error trials were discarded. Events of no interest (i.e., warning 

signal onsets and responses) were modeled using a simple intercept term. Target onsets were 

modeled according to the following Wilkinson-notation formula: y ∼ 1 + DKL + IS. The design 

matrix was time expanded from -1 s to 1 s around each event using a set of spline functions 

(1 s is the target stimulus duration and, therefore, the maximum time allowed to respond). 

Before fitting the model, residuals artifact intervals in the scalp-EEG signal were identified 

using a peak-to-peak voltage threshold of 75 μV and removed from the design matrix (i.e., set 

to 0). The estimated regression coefficients (betas) for each predictor (DKL and IS), which can 

be visualized as ERP-like waveforms or scalp topographies (aka “regression-ERPs”, rERPs), 

were then entered in a second-level analysis for group inference.  

Second-level analysis consisted of one-sample t-tests performed on estimated betas of DKL 

and IS parameters in the data space channels × epoch time points (0-1000 ms). Results for 

each parameter were corrected for multiple comparisons using the ept-TFCE toolbox (Mensen 

& Khatami, 2013) in MATLAB, which combines threshold-free cluster enhancement (TFCE) 

technique in conjunction with permutation-based statistics (5,000 permutations, α = 0.05).  

 

3. Results 

3.1 Behavioral results 

Table 1 shows the results of the optimization of the Bayesian learner parameters. The 

optimized parameters were used to obtain the DKL and IS regressors for both behavioral and 

EEG inferential analyses. The correlation between the two regressors was 0.33. 

Concerning RT inferential analyses, no term of the full model was removed by backward 

selection. Visual inspection of the full model residuals showed that they were skewed. As 

suggested by Baayen and Milin (2010), trials with absolute standardized residuals higher than 

2.5 SD were considered outliers and removed (1.5% of the trials). After outlier trials removal, 

the model was refitted and achieved reasonable closeness to normality. 
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A summary of the LMM results is presented in Table 2. The analysis revealed a significant 

effect of IS. Figure 2 shows that RTs were longer for higher values of IS. Importantly, this effect 

was further qualified by a significant interaction between DKL and IS. As depicted in Figure 2, 

the increase in RTs with increasing surprise (IS) was moderately augmented with high DKL in 

a multiplicative way. These results are highly consistent with our previous findings (see Table 

1 and Figure 1 in Visalli et al., 2019, and Table 1 and Figure 1 in Visalli et al., 2021). 

 

Table 1 | Ranges of free model parameters and optimized parameters from the RTs best-

fitting model. 

 Min Max Optimized 

parameters 

αL .1 .9 .2643 

τ1 10 100 84.7715 

τ2 0.1 1 0.3683 

βS 1 10 1 

 

Table 2 | Summary output of the final LMM model 

Predictors Estimates S.E. β p-value 

(Intercept) 5.69 0.019 -0.070 <0.001 

Trial 0.007 0.005 0.035 0.106 

PreRT 0.259 0.060 0.455 <0.001 

DKL -0.003 0.003 -0.014 0.191 

IS 0.074 0.004 0.345 <0.001 

DKL ⨉ IS 0.003 0.001 0.014 0.001 

Marginal R2 / Conditional R2 0.230 / 0.598   

Notes. PreRT: Response time at the preceding trial; DKL: Kullback-Leibler divergence; IS: Shannon 

information; S.E.: Standard Error; β: standardized coefficient. 
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Figure 2 | Interaction effect between IS and DKL on log-transformed RTs. The figure shows the 

conditional effect of surprise (z-scored IS) on log-RTs at the lowest (orange line) and highest (blue line) 

levels of updating (DKL). Shaded error bars indicate standard errors of estimated marginal means. 

 

3.2 EEG results 

Results of the TFCE analyses on updating and surprise are shown in Figures 2 and 3, 

respectively. 

Concerning updating (DKL, Figure 3), we mainly observed two significant modulations. A first 

positive modulation emerged over centro-parietal scalp electrodes (CP1, P1, P3, Cz, CPz, Pz, 

POz, C2, CP2, P2) in a time window ranging from 150 to 300 ms. The second significant effect 

consisted of a late and sustained positive modulation extending approximately between 500 

to 1000 ms over posterior electrodes (CP1, P1, P3, P5, P7, PO3, PO7, O1, CPz, Pz, POz, 

Oz, C4, C2, CP2, P2, P4, P6, PO4, PO8, O2). Correspondingly, a negative modulation was 

also found over frontal electrodes (Fp1, AF7, AF3, F7, F5, F3, F1, FT9, FT7, FC5, T7, Fpz, 

Fz, FCz, Fp2, AF8, AF4, F8, F6, F4, F2, FT10, FT8, FC6, FC4, FC2, T8). 

Concerning surprise (IS, Figure 4), we observed a significant positive modulation 

approximately between 260 and 520 ms over fronto-central electrodes (F5, F3, F1, FC5, FC3, 

FC1, C3, C1, C5, CP1, CP3, P1, Fz, FCz, Cz, CPz, F4, F2, FC6, FC4, FC2, C4, C2, CP2), 
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which was accompanied by a negativity mainly located at lateral and posterior channels (FT9, 

TP7, TP9, P3, P5, P7, PO3, PO7, O1, POz, Oz, FT10, T8, TP8, TP10, P4, P6, P8, PO4, PO8, 

O2). There was also an early significant positive modulation emerging at target onset and 

lasting for about 150 ms over central electrodes (FC3, FC1, C3, C1, CP1, CP3, P1, P3, FCz, 

Cz, CPz, Pz, F2, FC4, FC2, C4, C2, CP2, CP4, P2). Correspondingly, a negative modulation 

was observed over posterior channels (O1, Oz, FT10, TP8, TP10, P8, PO8, O2). Figure 4b 

shows that this early effect preceded target onset, thus suggesting an association with 

preparatory processes. However, the large range and variability of FPs employed in the 

present task (from 250 to 2500 ms) make it very difficult to analyze EEG signals during the 

FP. Therefore, we cannot draw any firm conclusion on the possible role of this effect, which 

will not be discussed further. 

Results of the TFCE analyses for updating and surprise computed on the basis of the HGF 

model (Figure S1 and Figure S2, respectively) were remarkably similar as the above-reported 

ones. 
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Figure 3 | Significant effects elicited by updating (DKL) on target-locked EEG. (a) Raster diagram 

showing significant effects elicited by updating. Rectangles in warm and cold colors indicate 

electrodes/time points significantly modulated by the DKL regressor. The colorbar indicates t values. 

Gray rectangles indicate electrodes/time points for which no significant modulations were observed. 

Note that electrodes are organized along the y-axis somewhat topographically (Groppe et al., 2011). 

Electrodes on the left side of the scalp are grouped on the top of the diagram, midline electrodes are 

shown in the middle, and right electrodes are grouped at the bottom. Within those three groupings, the 

y-axis top-to-bottom corresponds to anterior-to-posterior electrodes. (b) Trace-plot depicting the mean 

beta values (grand-average rERP) of the DKL parameter (UNFOLD analysis) averaged over the 

electrodes indicated as black dots in the corresponding topoplot (i.e., CPz, P1, Pz, P2, POz). The 

shaded error bar indicates standard errors of the mean. (c) Topoplots showing the t values (same color 

scale of the raster diagram) averaged in the indicated time windows. 
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Figure 4 | Significant effects elicited by surprise (IS) on target-locked EEG. (a) Raster diagram 

showing electrodes/time points significantly modulated by the IS regressors. (b) Trace-plot depicting the 

mean IS beta values (grand-average rERP) averaged over the electrodes indicated as black dots in the 

corresponding topoplot (i.e., FCz, C1, Cz, C2, CPz). (c) Topoplots showing the t values (same color 

scale of the raster diagram) averaged in the indicated time windows. For conventions, refer to Figure 3. 

 

4. Discussion 

The main aim of the present EEG study was to investigate how surprise and updating are 

encoded when changes in the temporal probabilities of the events are incidentally inferred. To 

summarize the main findings, while surprise modulated a fronto-central positivity, updating 

was instead associated with an earlier parietal P2-like component followed by a more posterior 

P3-like modulation. Extending our previous findings (Visalli et al., 2021), these results 
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confirmed that surprise and updating might be still distinguished at the electrophysiological 

level even when changes in temporal probabilities were incidentally learned.  

Beginning with our surprise-related findings, the analyses showed a significant positive 

modulation peaking at around 400 ms over fronto-central electrodes. According to its timing 

and topographical scalp distribution, such a component could be viewed as belonging to the 

P3 family waveforms (Polich, 2007). This finding is in line with previous studies showing that 

trial-by-trial variability in P3 amplitudes reflects predictive surprise (Kolossa et al., 2013, 2015; 

Kopp et al., 2016; Mars et al., 2008; Modirshanechi et al., 2019). Moreover, once again we 

showed that a computational account of the P3 as a signature of surprise also holds in the 

temporal domain where the predictability of an event is modeled by the hazard function (Herbst 

et al., 2018). 

Concerning updating, we corroborated our previous findings of a later P3 modulation by the 

updating of temporal expectations also in an incidental learning task. If, as mentioned above, 

several studies found that P3 amplitudes reflect surprise, other studies reported an association 

between P3 modulations and Bayesian updating (Bennett et al., 2015; Kolossa et al., 2015). 

Of note, the close relationship between updating and surprise motivated our previous cued 

paradigm that experimentally attempted to disentangle the two measures. In both this and our 

previous study (Visalli et al., 2021), we found that P3 amplitude variations are related to 

updating and that this modulation appeared later and was more sustained compared to the 

surprise-related P3. Overall, it seems that distinct P3 modulations encompass dissociable 

information-theory measures of updating and surprise and that these modulations are not 

contingent on the presence or absence of updating cues. 

Following with updating-related findings, the P3 was preceded by a significant P2-like 

modulation peaking at around 200 ms over parietal sites. The precise functional meaning of 

such a component is still unclear (Luck, 2011). It has been suggested that the posterior P2 

might be considered a signature of comparison mechanisms between information stored in 

memory and sensory input (Freunberger et al., 2007). In the literature on time perception, it 

has been also shown that the P2 amplitude reflected the distance between standard and 

comparison intervals in a temporal discrimination task, whereas it was not affected by the 

hazard rate of elapsed time (Kononowicz & van Rijn, 2014). Overall, these findings support 

the view of our P2-like component as an index of some comparison mechanisms involved in 

updating. Of note, this component was much more pronounced here as compared to our 

previous study (see Supplementary Figure S4). As one possibility, the P2 might be related to 

posterior computation. Indeed, in the previous study, participants were explicitly instructed 

about the transition between blocks (O’Reilly et al, 2013). This implies that, after update trials, 
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the posterior was computed starting from a uniform distribution as participants could disregard 

the prior to derive the posterior. Conversely, in the current study, the posterior was computed 

by integrating prior and likelihood. It thus makes sense that the enhanced P2 modulation 

observed here might reflect an increased computational complexity. 

A relevant note concerns the characteristics of our experimental paradigm in the investigation 

of the neural underpinnings of updating and surprise. Indeed, even without an explicit 

manipulation, we were still able to differentiate between updating and surprise. This is because 

in temporal preparation tasks (like the FP task) updating and surprise rely on two different 

types of temporal information carried by the target. Briefly, surprise derives from the hazard 

rate of target onset that, as already explained, considers the passage of time during the FP. 

The information conveyed by the passage of time, however, is irrelevant for the updating of 

beliefs about target timing. Indeed, even a low surprising event such as a late target onset can 

induce a strong revision of our expectations. This peculiarity of temporal preparation tasks 

could be exploited in future research to improve our understanding of the computational 

meaning of several neural mechanisms. For example, relying on the P3 literature (see 

Nieuwenhuis, 2011), it might help to further characterize the distinct computational roles of 

neuromodulatory systems in encoding inferential information. 

It should be acknowledged that there are multiple ways to formally define surprise (see 

Modirshanechi et al., 2022 for a systematic review). In recent years, an increasing number of 

studies have shown that different formalizations of surprise can be related to distinct EEG 

signatures (e.g., Gijsen et al., 2021; Kolossa et al., 2015; Visalli et al., 2021; Xu et al., 2021). 

Although computational approaches allow tracing terms or concepts (e.g., surprise, Bayesian 

surprise, postdictive surprise, belief updating, novelty) back to their formalization, it is helpful 

to elaborate more on the relation of our surprise measures with definitions used in previous 

studies. Here, the term “surprise” refers to “prediction surprise” (Modirshanechi et al., 2022), 

a measure also known as Shannon information (or also Shannon surprise or surprisal; Barto 

et al., 2013). Critically, surprise about event timing (Meindertsma et al., 2018) differs from 

surprise about other types of events since, as explained above, it does not represent a 

mismatch between the event and prior belief, but it is computed on the hazard rate of the 

observation. Concerning “updating”, we refer to an “information gain surprise” measure 

(Modirshanechi et al., 2022), also known as Bayesian surprise (Baldi & Itti, 2010; Itti & Baldi, 

2009). Specifically, in this study, belief updating was not evaluated in the space of distributions 

over parameters, but over the space of observations (i.e., FP duration). To capture this 

difference, Kolossa and colleagues (2015), introduced the label “postdictive surprise” to refer 

to divergence (updating) between prior and posterior distributions over observation, while they 

used the term Bayesian surprise to describe belief updating in the parameter space. A further 
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difference between our work and previous studies investigating brain correlates of distinct 

surprise measures is that we employed continuous rather than multinomial stimuli. This is a 

relevant aspect, since links between information-theory measures and psychological 

constructs have been mainly proposed in relation to discrete states. To make an example, 

consider the debated distinction between surprise and novelty (Barto et al., 2013; Xu et al., 

2021). Although it is easier to narratively conceive such a distinction with discrete variables 

and translate it into computational definitions, its formalization with continuous variables 

appears harder. Overall, the development of a comprehensive theory of surprise in the brain 

requires the well-considered integration of computational modeling and construct validation 

(Grahek et al., 2021). 

Some aspects of the computational model used in the present study deserve attention. First, 

the model variant that considered learning at different time scales (Kolossa et al., 2013) 

provided a better fit of behavioral data as compared to the variant using a single temporal 

forgetting. This result is in line with recent findings showing that different brain signatures 

correlate with surprise values computed according to different integration time scales (Maheu 

et al., 2019). Taken together, these findings provide promising evidence for different neural 

mechanisms supporting Bayesian inference at different time scales. Second, the ideal 

Bayesian learner was adapted from our previous works to facilitate comparison between the 

present and previous findings. Although such a model was designed to capture all the 

peculiarities of the task (see O’Reilly et al., 2013), it represents “just a description of optimal 

behavior: it does not prescribe how Bayes optimal perception, sensorimotor integration or 

decision-making under uncertainty emerges” (Friston, 2012). A full understanding of how the 

brain updates temporal expectations needs more sophisticated models that consider the 

constraints deriving from the anatomy and the physiology of the brain, such as its functional 

hierarchical architecture or neuronal dynamics (e.g., Barry & Gerstner, 2022; Iigaya, 2016). In 

this respect, the fact that the use of an alternative and more biologically plausible model (i.e., 

the HGF; Mathys et al., 2011) led to very similar results corroborates our conclusions. Overall, 

our studies should be considered as a pioneering attempt towards the implementation of future 

models to understand how the brain refines temporal expectations. 

To conclude, the present study isolated the electrophysiological correlates of surprise and 

updating of temporal expectations, highlighting both commonalities and differences between 

cued and incidental learning paradigms. Remarkably, the P3 family was proven again to be a 

valid index of inferential processes in the temporal domain even in the absence of explicit 

information, which reinforces the pivotal role of the P3 in understanding the Bayesian brain.  
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