In this work, a peridynamics-based representative volume element approach is implemented to estimate the effective tensile modulus of nanomodified epoxy resins. The results obtained through this homogenization procedure are then used as input for the analysis of nanocomposite fracture toughness, which is carried out by exploiting a classical continuum mechanics-peridynamics coupling strategy. In the coupled model, the small-scale heterogeneity of the crack tip region is preserved by implementing the recently proposed intermediately-homogenized peridynamic model. Comparison to experimental data confirms the capability of the peridynamics-based approaches to properly model the effective tensile modulus and fracture toughness of polymer-based nanocomposites.

A multiscale peridynamic framework for modelling mechanical properties of polymer-based nanocomposites

Greta Ongaro
;
Roberta Bertani;Ugo Galvanetto;Alessandro Pontefisso;Mirco Zaccariotto
2022

Abstract

In this work, a peridynamics-based representative volume element approach is implemented to estimate the effective tensile modulus of nanomodified epoxy resins. The results obtained through this homogenization procedure are then used as input for the analysis of nanocomposite fracture toughness, which is carried out by exploiting a classical continuum mechanics-peridynamics coupling strategy. In the coupled model, the small-scale heterogeneity of the crack tip region is preserved by implementing the recently proposed intermediately-homogenized peridynamic model. Comparison to experimental data confirms the capability of the peridynamics-based approaches to properly model the effective tensile modulus and fracture toughness of polymer-based nanocomposites.
File in questo prodotto:
File Dimensione Formato  
Ongaro_Multiscale_2022.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Altro
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3457294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex ND
social impact