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Abstract

In this work, a peridynamics-based representative volume element approach is imple-

mented to estimate the effective tensile modulus of nanomodified epoxy resins. The re-

sults obtained through this homogenization procedure are then used as input for the anal-

ysis of nanocomposite fracture toughness, which is carried out by exploiting a classical

continuum mechanics-peridynamics coupling strategy. In the coupled model, the small-

scale heterogeneity of the crack tip region is preserved by implementing the recently

proposed intermediately-homogenized peridynamic model. Comparison to experimen-

tal data confirms the capability of the peridynamics-based approaches to properly model

the effective tensile modulus and fracture toughness of polymer-based nanocomposites.
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Nomenclature

a Initial pre-crack length

aij Material elastic constants

ARmean, ARstd Mean value and standard deviation of the nanofillers

aspect ratio

b Prescribed body force density field

B Specimen thickness

, ) Domain and boundary of the domain

FEM , PD Finite element region and peridynamic region

c Micromodulus

C Second-order tensor of f

dVx′ Infinitesimal volume associated to the material point x′

Diffrel Relative difference

E Effective tensile modulus

Em, Enf , Eint, Eagglm Matrix, nanofiller, interface, and agglomeration

tensile moduli

f Pairwise force function

f Magnitude of f

f (x) Function of the ratio x

G0 Critical energy release rate

G0m, G0nf , G0int Critical energy release rates of matrix-matrix,

nanofiller-nanofiller, and interface bonds

ℎ Plate thickness

x Finite neighbourhood of the material point x

KIc Mode I fracture toughness

KIcm Average value of the matrix fracture toughness

LRVE Side length of the square RVE

LPDx, LPDy Dimensions of the peridynamic region along the

x- and y-directions
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Lx, Ly Plate dimensions along the x- and y-directions

m Ratio between � and Δx, usually referred to as m-ratio

n Time step number

p Spatial dimension

Pcr Peak or fracture load

s, s0 Scalar bond stretch and critical bond stretch

t Time

u Displacement field

ui Imposed displacement in the external boundary layers

u1, u2 Imposed displacements along the x- and y-directions

vol Filler volume fraction

Vi Discretized volume associated to node xi

wt Filler weight fraction

W Specimen ligament

x Ratio between a and W

xj Relative distance of external boundary layer nodes

x Material point

xi Node

�(�) Partial-volume correction factor


 Correction factor

� Horizon

Δx, Δy Grid spacings in the x- and y-directions

"ij Components of the average strain tensor

� Relative displacement vector

�int Interface factor

�(�, t) History-dependent scalar-valued function

� Effective Poisson’s ratio

�DGEBA Typical Poisson’s ratio for a DGEBA-based epoxy resin

�m, �nf Matrix and nanofiller Poisson’s ratios

� Relative position vector in the reference configuration
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� Mass density

�m, �nf Matrix and nanofiller volumetric mass densities

�ij Components of the average stress tensor

' Damage index

� Fracture energy factor

1. Introduction5

In the last years, the need of the aerospace industry to employ lighter and more

efficient components for aircraft, satellite and launcher structures has led to an ever-

increasing development of high specific stiffness materials like composites and nanocom-

posites. Among them, the interest of the academic and industrial communities has been

attracted by polymer-based materials reinforced with nanoclay platelets, since they ex-10

hibit enhanced mechanical and barrier properties, superior performance in terms of ther-

mal stability and flame retardancy, and excellent corrosion and fatigue resistances [1, 2].

The application of these materials is in fact expanding rapidly in a wide range of fields,

such as aerospace, automotive, construction, transportation, and packaging [3, 4].

Nanoclays platelets are characterized by a very large surface area and are exploited15

to modify polymer materials, due to their unusual mechanical, electrical, optical and

magnetic properties, their high availability in nature and low-cost of production [1, 4].

In general, three types of nanoclay morphologies are identified within a polymer ma-

trix, depending on the dispersion state of the silicate layers. These morphologies are

referred to as aggregated, intercalated and exfoliated [5]. The molecular interactions be-20

tween nanoclays and polymer chains lead to a modification of the matrix in the region

surrounding the nanofillers. This region is referred to as interface and is usually char-

acterized by properties which can differ substantially from those of both constituents.

Considering that this is the zone in which the interactions between the different con-

stituents take place, the properties of this region have a significant influence on the25

characteristics of the resulting nanocomposite.

The nanocomposite mechanical properties are strongly influenced by the structure

of the reinforcing particles and by the quality of their dispersion and distribution within
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the polymer material. The inhomogeneous distribution of silicate layers within the ma-

trix leads, in fact, to the formation of local agglomerates, which negatively affect the30

mechanical performance of the composite [5]. Moreover, the analysis of the relevant

literature generally indicates that the addition of low concentrations of nanoclays in a

polymer matrix results in a significant enhancement of the tensile properties of the ma-

terial in well dispersed conditions [6]. For practical applications, the most important

property to be studied is the fracture toughness, since nanomodified polymers can be35

employed as toughened matrices in ternary, fibre reinforced, nanocomposites [7]. Ex-

perimental studies available in literature demonstrate that the nanomodification usually

enhances the fracture toughness of polymer-based matrices. Furthermore, an aspect

which is also highlighted by various studies is the weakening of the mechanical prop-

erties which occurs when an optimum clay content is exceeded, due to the formation of40

various localized agglomerations of nanoclay stacks [4, 7–10].

The numerical modelling of polymer-based nanocomposites is most of the time ac-

complished using finite element-based techniques [3, 11]. Even though FE-based ap-

proaches are widely employed, they present some limitations. For instance, some mesh-

ing problems could arise when modelling regions containing particles characterized by45

an high aspect ratio, i.e., the ratio between nanofillers characteristic length and thick-

ness [11]. Another complexity lies in the modelling of the interface region, since it is the

portion of the domain where the stress transfer mechanism takes place, thus requiring

a proper selection of element types, geometrical and mechanical properties. The appli-

cation of these methods for damage prediction also introduces some challenges arising50

from the presence of spatial derivatives of displacements in the governing equations,

which are undefined when the displacement fields are discontinuous [12, Chapter 1].

Many scientists have therefore tried to equip FEM-based models with the capability to

simulate crack formation and propagation, but all the proposed strategies present some

drawbacks (see [12, Chapter 10]).55

Innovative approaches based on the peridynamic (PD) theory have recently been

proposed to overcome these limitations. The theory was first introduced in the year

2000 in [13] to model damage and fracture and, since then, it has been extended to a

variety of other problems involving the analysis of impact [14, 15], fatigue [16, 17],
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dynamic fracture [18–22], and sloshing [23]. PD theory has also been exploited for the60

modelling of several material systems [24–26], and for the study of different physical

fields [27–31] and multiphysics problems [32–34]. PD introduces a concept of damage

for a material point, allowing to predict the evolution of cracks, including their nucle-

ation and propagation direction, without the need to define any ad hoc criteria or special

treatments. The introduction of a length parameter, i.e., the so called horizon, also en-65

ables the analysis of material response at different length scales, from macroscale to

nanoscale [35], and the implementation of homogenization and multiscale schemes.

The growing interest in nanocomposite technologies has in fact given a boost to the

development of computational homogenization schemes based on the representative

volume element (RVE) or unit cell (UC) concepts. In [36], a PD-based UC model was70

developed to compute the effective properties of composites through a microstructure

informed homogenization scheme. In [37], bond-based PD was employed to develop

an RVE-based model to study fibre reinforced composites, whereas, in [38], the RVE

concept was exploited to predict polymer-based nanocomposite properties. In the first

part of the present work, an RVE-based homogenization is implemented in a PD frame-75

work for the modelling of the tensile modulus of polymer/clay nanocomposites. The

proposed method, which requires the explicit representation of the material microstruc-

ture, has the capability to model randomly distributed curved nanofillers with different

sizes and orientations, and to easily simulate interface properties and nanofiller ag-

glomeration phenomena by simply tuning the properties of the PD bonds, therefore not80

requiring the implementation of multistep homogenization procedures or the definition

of equivalent homogenized particles [2, 3, 39]. Moreover, the meshless nature of the

proposed method avoids elements distortion issues affecting FEM models dealing with

high aspect ratio of nanofillers, hence facilitating the simulation of common high aspect

ratio values.85

In [40], the authors demonstrate that, in the framework of PD, the implementation

of regular homogenization techniques for fracture problems in which the microstruc-

tural characteristics play an important role, can fail to represent some experimentally

observed behaviours. In order to overcome this limitation, the authors proposed a new

homogenization strategy, referred to as intermediately-homogenized peridynamic (IH-90
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PD) model, which enables the modelling of the fracture behaviour without the need for

an explicit description of the material microstructure. Inspired by the aforementioned

study, in the second part of this work, the IH-PD approach is exploited to study the

fracture toughness of polymer-based nanocomposites. Differently from the RVE-based

homogenization, this method is applied to simulate the fracture properties of a full scale95

model of a compact tension specimen [41]. In order to increase the computational effi-

ciency of the model [12, Chapter 14], to avoid the difficulties related to the definition of

nonlocal boundary conditions [13], and to eliminate the PD surface effect [18, 42], the

IH-PD model is coupled with a FEM-based model by employing the coupling strategy

proposed in [43] and [44]. In this way, the area of the domain affected by the presence100

of discontinuities is described with the IH-PD model, whereas the remaining parts of

the domain are represented through a more efficient FEM model.

In the framework of brittle fracture modelling, the bond-based formulation is the

standard and most commonly used approach among the PD community, due to its ease

of implementation and lower computational cost with respect to the state-based version105

of the theory. Moreover, the intrinsic Poisson’s ratio limitation of bond-based PD is not

expected to affect the results and conclusions of the present work, since the Poisson’s

ratio effect is usually not significant in the fracture behaviour of many materials [45].

The bond-based formulation is therefore exploited here to develop the proposed models.

The numerical approaches are calibrated by using experimental data reported in110

literature and the experimental results obtained by performing tensile and fracture tests

on nanomodified epoxy resins.

The contents of this paper are organized as follows. In Section 2, a brief overview

of the bond-based version of PD theory and its discretization are provided. In Section 3,

the experimental activity is briefly outlined, focusing on the description of the tensile115

and mode I fracture tests results in Sections 3.1 and 3.2, respectively. In Section 4, the

PD-based RVE approach is presented. Section 5 discusses the coupling-based strategy

adopted to study the nanocomposite fracture toughness. Section 6 closes the paper with

some remarks and proposals for future research.
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Figure 1: Representation of a generic PD domain  before and after deformation; the relative position vectors

and the relative displacement vector between two material points x and x′ are also schematically illustrated.

2. Fundamentals of peridynamic theory and its discretization120

In a domain  ⊂ ℝp with p the spatial dimension, described with a PD model, each

material point x ∈  interacts with all the other material points located within a finite

neighbourhood, x, of that material point (see Fig. 1). The bond-based PD equation of

motion for any material point x ∈  at time t ⩾ 0 is given by [13]:

�(x)ü(x, t) = ∫x

f
(
u
(
x
′, t

)
− u (x, t) , x′ − x

)
dVx′ + b(x, t), (1)

where � is the mass density, ü is the second derivative in time of the displacement field u,125

f denotes the pairwise force function, with units of force per unit volume squared, that

the material point x′ exerts on the material point x, and b is a prescribed body force

density field. The neighbourhood x is defined by:

x ∶= {x′ ∈  ∶ ‖x′ − x‖ ⩽ �}, (2)

where � > 0 is the horizon. As shown in Fig. 1, the relative position vector of the two

material points x and x′ in the reference configuration is denoted by:130

� ∶= x
′ − x, (3)
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which represents the standard PD notation for a bond. In the deformed configuration

at time t > 0, the two material points x and x′ would be displaced, respectively, by

u(x, t) and u(x′, t). As schematically represented in Fig. 1, the corresponding relative

displacement vector is defined as � ∶= u(x′, t) − u(x, t). The force vector f , also called

bond force, acts in the direction of the relative position vector of the two material points135

x and x′ in the deformed configuration (�+ �) (see Fig. 1). The scalar bond stretch s is

defined as:

s ∶=
‖� + �‖ − ‖�‖

‖�‖ . (4)

In the case of the prototype microelastic brittle (PMB) material model [13], the magni-

tude f of the force vector f is given by [14]:

f = cs, (5)

where c is the micromodulus and represents the bond elastic stiffness. The micromod-140

ulus c can be related to measurable macroscopic quantities such as the tensile mod-

ulus E and the Poisson’s ratio of the material � (see [14, 46–48]). It is important

to highlight that, in bond-based PD, the Poisson’s ratio is restricted to a fixed value.

For three-dimensional and two-dimensional plane strain cases, the Poisson’s ratio is

fixed to � = 1∕4, whereas for the two-dimensional plane stress case it is constrained to145

� = 1∕3 [13, 47]. This limitation has been removed in the state-based version of the

theory. The micromoduli for the two-dimensional plane stress and plane strain models

presented in this work are computed by employing the correction factor 
 introduced

in [49]. The concept of material failure is introduced by defining a critical value for the

bond stretch, s0, after which a bond is broken and, consequently, no tensile force can150

be sustained by the bond (see Fig. 2). The critical stretch s0 can be related to measur-

able macroscopic quantities such as the critical energy release rate of the material G0

(see [14]). As depicted in Fig. 2, the history-dependence of the PMB material consti-

tutive model is introduced by the definition of the function �(�, t), which can assume

either of the following two values:155

�(�, t) ∶=

⎧⎪⎨⎪⎩

1 if s < s0 ∀ 0 < t
′

< t,

0 otherwise.

(6)
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Figure 2: Scalar bond force versus scalar bond stretch for the PMB material model. Redrawn, with modifi-

cations, from [14].

This bond-breaking parameter can then be included in the scalar bond force definition,

allowing (5) to be rewritten as [13]:

f (�, t) = �(�, t)cs. (7)

The history-dependence of the constitutive model is a consequence of the fact that the

bond breakage is irreversible. The damage level at a material point x at time t can then

be quantified through the damage index ', which is defined by the following relation:160

'(x, t) ∶= 1 −
∫x

�(�, t)dVx′

∫x

dVx′
, (8)

where 0 ≤ ' ≤ 1, 0 represents the undamaged state of the material, and 1 indicates

the complete disconnection of the material point x from all the material points located

within its neighbourhood.

The discretized form of the bond-based PD equation of motion can be written by

adopting the meshfree approach introduced in [14]:165

�iü
n
i
=
∑
j

f (un
j
− u

n
i
, xj − xi)�(�)Vj + b

n
i

∀xj ∈ xi
, (9)
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where i is the index of the central node, j is the family node index and represents all

nodes within the neighbourhood xi
of node xi, n is the time step number, Vj is the

discretized volume associated to node xj , and �(�) is a partial-volume correction factor

used to evaluate the portion of Vj that falls within the neighbourhood of the source node

xi, xi
[50]. The spatial integration is performed by adopting the one-point Gauss170

quadrature rule. In this work, the assumption of small strains and displacements is

made, so that, according to [14], the linearized version of (9) can be expressed as:

�iü
n
i
=
∑
j

C(xj − xi)(u
n
j
− u

n
i
)�(�)Vj + b

n
i

∀xj ∈ xi
, (10)

where C is a second-order tensor of the force vector f defined by the following rela-

tion [13]:

C(�) ∶=
)f

)�
(0, �). (11)

The meshfree discretization of the domain implemented in this work considers a uni-175

form distribution of nodes with Δx = Δy, where Δx and Δy are the grid spacings in the

x- and y-directions, respectively. A fundamental parameter of the discretized version

of PD is the ratio between the horizon and the grid spacing, i.e., m = �∕Δx; � and

m are, therefore, the two parameters which determine the number of interactions to be

considered for each node in a discretized PD model.180

3. Experimental analysis of epoxy/clay nanocomposites

In the present work, a diglycidyl ether of bisphenol A epoxide (DGEBA, Elan-Tech

EC157) and the mixture of cycloapliphatic amines (Elan-Tech W152LR), both supplied

by Elantas, were used as polymer components. Cloisite®15A, a natural montmorillonite

modified with dimethyl dihydrogenated tallow quaternary ammonium salt (Southern185

Clay Products) was employed for nanomodification. Nanofiller weight fractions of 0%,

1%, 3%, and 5% wt were used to investigate the tensile and fracture properties of the

material as a function of the clay content. The samples were prepared according to the

procedure described in [8].
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Figure 3: Average tensile modulus of the neat epoxy resin and the epoxy/Cloisite®15A nanocomposites with

1%, 3%, and 5% wt of clay content obtained from tensile tests. Error bars: ±1 standard deviation.

Figure 4: Transmission Electron Microscopy (TEM) image of an epoxy/Cloisite®15A nanocomposite with

5% wt of clay content. The micrograph shows the coexistence between resin-rich areas and nanofiller-rich

regions with intercalated and aggregated morphologies.
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3.1. Tensile Testing190

Tensile tests on dog-bone (DB) specimens were carried out taking advantage of a

Galdabini SUN2500 universal mechanical testing machine equipped with a 25 kN load

cell using a crosshead speed equal to 2 mm/min. The specimen geometry was chosen

according to ISO 527–2 [51]. For each clay content, at least seven specimens were

tested to obtain statistically representative results. In all cases, failure took place in the195

gauge length of the specimens. The experimental results, rearranged according to ISO

527–2 [51], are depicted in Fig. 3 in terms of average values of the tensile modulus

and corresponding standard deviations. These data show that the nanomodification of

the polymer matrix resulted in a slight decrease in the tensile modulus of the material.

The reason for this behaviour lies in the inhomogeneous distribution of nanoclays within200

the matrix and in the presence of large localized nanofiller aggregates and agglomerated

clay stacks (see Fig. 4) [8]. The results reported in Fig. 3 are overall in agreement with

previous experimental studies conducted on this class of materials [7, 8].

3.2. Mode I fracture testing

In agreement with the ASTM D5045-14 guidelines [41], mode I fracture tests were205

carried out on compact tension (CT) specimens by taking advantage of an electro-

mechanical testing machine (STEP Lab) equipped with a 10 kN load cell using a crosshead

rate of 10 mm/min. The mode I fracture toughness KIc was computed from the follow-

ing expression, as suggested by the guidelines reported in ASTM D5045-14 [41]:

KIc =
Pcr

BW0.5
f (x), (12)

where Pcr is the peak or fracture load measured in [kN], B is the specimen thickness210

measured in [cm], W is the specimen ligament measured in [cm], x =
a

W
is the ratio

between the initial pre-crack length a and the ligament (see [41]), and the suggested

expression for f (x), valid for 0.2 < x < 0.8, is:

f (x) =
(2 + x)

(
0.886 + 4.64x − 13.32x2 + 14.72x3 − 5.6x4

)

(1 − x)1.5
. (13)

Four values of KIc were obtained for each clay content, for a total of sixteen samples

tested. The results in terms of average values and corresponding standard deviations are215
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Figure 5: Average fracture toughness of the neat epoxy resin and the epoxy/Cloisite®15A nanocomposites

with 1%, 3%, and 5% wt of clay content evaluated from mode I fracture tests. Error bars: ±1 standard

deviation.

reported in Fig. 5. It is worth mentioning that, as opposed to the tensile modulus (see

Fig. 3), the mode I fracture toughness of the epoxy resin was remarkably enhanced by

the nanomodification. As shown in Fig. 5, the KIc had in fact an initial monotonic trend

with increasing filler weight fraction, with improvements of about +18.5% and +60.2%

as compared with the neat epoxy case for 1% wt and 3% wt of clay content, respectively.220

The fracture toughness then reached a plateau for 5% wt of nanofiller content, with a

slight increase of about +1.2% with respect to the 3% wt case.

The value of the critical energy release rate of the polymer matrix, G0m, which is

used as one of the input parameters for the modelling procedure presented in Section 5,

can then be computed through the following relation:225

G0m =
K2

Icm

Em

(
1 − �2

DGEBA

)
, (14)

where KIcm represents the average value of the fracture toughness of the neat epoxy

resin obtained from the fracture tests (see the 0% wt case in Fig. 5), Em is the average

value of the tensile modulus of the neat epoxy resin obtained from the tensile tests

(see the 0% wt case in Fig. 3), and �DGEBA is the Poisson’s ratio of the matrix material,

which is taken here as 0.35 (typical value for a DGEBA-based epoxy resin [9, 52]). This230

relation is valid under plane strain conditions, as suggested in ASTM D5045-14 [41].
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The different trends observed for tensile modulus and fracture toughness with in-

creasing filler content are consistent with previous experimental studies reported in liter-

ature [7–10], and are related to the morphology of the samples, which are mostly charac-

terized by intercalated and aggregated clay structures (see Fig. 4). Intercalated platelets235

promote, in fact, the increase of the material toughness, whereas the enhancement of

the tensile modulus is usually linked to the presence of exfoliated nanoplatelets [10].

Moreover, it is to note that, some damaging mechanisms previously detected in poly-

mer/clay nanocomposites and comprehensively discussed in [53] were observed here as

well through the fracture images reported in Figs. 6 and 7. The presence of intercalated240

tactoids and microsized filler clusters altered the crack path by inducing crack deflec-

tion and pinning. The energy dissipation caused by the crack deflection mechanism

was evident from the increase of the fracture surface roughness (see Fig. 6a), whereas

crack pinning was identified by the presence of many secondary cracks which tended to

unify and form fracture steps, appearing as tails [53] (see Fig. 6b). As shown in Fig. 6c,245

microvoids were also detected in the regions close to the microsized filler clusters. In

addition, microcracks formed via matrix-nanofiller delamination were observed both

along the interface region and between the clay platelets (see Figs. 7a and 7b). All

the previously mentioned mechanisms were therefore regarded as responsible for the

fracture toughness enhancement reported in Fig. 5.250

4. PD-based RVE approach for nanocomposite tensile modulus modelling

In the following, an RVE homogenization is implemented in a bond-based PD frame-

work to derive the effective tensile modulus of nanocomposite materials. The results

obtained through this numerical procedure are used in the analysis of nanocomposite

fracture toughness in Section 5.255

Remark 1. It must be emphasised that the PD models used in Section 4 and Section 5

operate at different length scales. In Section 4, the RVE has a size of 1.5 × 1.5 μm2

and the nanofillers are individually represented in it. On the contrary, in Section 5, the

PD portion of the model has a size of 9.88 × 6.68 mm2 and the effect of the nanofillers

15



(a) (b)

(c)

Figure 6: Environmental Scanning Electron Microscopy (ESEM) images of epoxy/Cloisite®15A nanocom-

posites showing (a) crack deflection (5% wt clay-loaded sample), (b) crack pinning (1% wt clay-loaded sam-

ple), and (c) microvoids (3% wt clay-loaded sample).
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(a) (b)

Figure 7: TEM images of an epoxy/Cloisite®15A nanocomposite sample with 5% wt of clay content.

is introduced only at a statistical level in the definition of the properties of the bonds,260

according to [40].

4.1. Modelling procedure

Although the PD-based approach proposed in this section could be effectively ex-

tended to model three-dimensional RVEs, two-dimensional RVEs are implemented here

as a trade-off between accuracy and computational cost. As widely documented in lit-265

erature [38, 54–57], two-dimensional RVEs have been frequently employed to study

polymer/clay nanocomposites, since the relatively small thickness of nanoclay platelets

allows for the assumption of a two-dimensional simulation domain under plane stress

conditions. As reported in [57], given that the nanoclay has very large length and width,

but small thickness, the cross-section of a two-dimensional RVE in fact allows for a270

good representation of nanoplatelets in a three-dimensional domain.

As comprehensively outlined in [58], different approaches have been developed so far

to build RVEs. In this work, the RVE is generated by exploiting an in-house algorithm

inspired by the study presented in [55]. Differently from the procedure adopted in [55],

the present algorithm allows the overlapping of different nanoplatelets in order to better275

represent the agglomeration phenomenon.
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(a) (b)

Figure 8: Example of two different RVE realizations of the same nanocomposite material. In the geomet-

rically periodic RVEs, the matrix phase is represented by green nodes, whereas the curved nanoclays are

represented by magenta nodes.

4.1.1. Definition of nanofiller and matrix properties

Mechanical and geometrical properties of the constituents need to be taken from

available experimental studies. In the present work, the required data have been par-

tially obtained from an experimental campaign carried out by the authors (see Sec-280

tion 3.1) and from an experimental investigation reported in literature [52]. In order

to take into account the inherently stochastic nature of nanocomposites, the nanofillers

aspect ratio, curvature, and location within the matrix are supposed to be affected by

uncertainties and therefore modelled by selecting the most suitable probability distribu-

tion functions [55]. The aspect ratio of the nanofillers, AR, is modelled by employing285

the Gaussian distribution function, whereas discrete uniform distributions are used to

model the curvature and location of the nanofillers.

4.1.2. RVE selection and modelling

The properties obtained from available experimental studies are then used as input

for the RVE model [59]. The statistical properties of the nanocomposite are computed290

by constructing many RVEs, each of them considered as a single realization of the mate-

rial, and by averaging their results. In order to determine the number of RVEs required

to obtain suitable results in terms of effective tensile modulus, it is necessary to study

18



the trend of this property as a function of the number of realizations (see Section 4.2).

Moreover, the RVE should contain a sufficient number of inclusions for the overall mod-295

uli to be independent of the surface values of traction and displacement, provided that

these values are macroscopically uniform [59].

After the selection of the most suitable size, the square RVE domain is discretized

into a grid of PD nodes to which different sets of material properties are assigned to

simulate the presence of randomly distributed nanofillers within the matrix. The non-300

straight shape of the nanofillers is modelled through a newly developed algorithm which

also assigns a random aspect ratio and orientation to each nanoplatelet. The domain is

modelled as geometrically periodic (see Fig. 8).

Following the allocation of the node properties, the PD bonds are created. Three

different types of bonds are defined, depending on the nature of the nodes at their305

ends: matrix-matrix, nanofiller-nanofiller, and matrix-nanofiller, or interface, bonds.

The tensile modulus of the matrix and the one of the nanofiller, i.e., Em and Enf , are

assigned to the matrix-matrix and nanofiller-nanofiller bonds, respectively, while the

stiffness of the interface bonds is modelled as a function of the matrix tensile modulus,

i.e., Eint = �intEm, where �int represents an interface factor which must be calibrated310

through available experimental data (see Section 4.2). A special case of nanofiller-

nanofiller bonds is represented by the bonds connecting nanofiller-type nodes belong-

ing to different nanoplatelets. The tensile modulus of this subset of bonds, which is

employed to simulate the presence of nanoclay agglomerations, is chosen to be equal

to the lower between the matrix and interface tensile moduli, depending on each case315

study, such as:

Eagglm =

⎧
⎪⎨⎪⎩

Em if Eint ≥ Em,

Eint if Eint < Em.

(15)

The number of bonds belonging to each of the aforementioned typologies depends on

the value of the filler volume fraction, which is referred to as vol. In the experimental

analysis outlined in Section 3 and, in general, in most experimental studies reported

in literature, it is preferred to express the nanoclay content in terms of weight fraction320

rather than volume fraction. Considering that the numerical approach requires instead
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the filler content to be defined in terms of volume fraction, it is possible to convert this

quantity through the following relation [1]:

vol =

wt

�nf

wt

�nf
+

(1−wt)

�m

, (16)

where �nf and �m are the nanofiller and matrix volumetric mass densities, respectively.

4.1.3. Static analysis implementation325

Following the definition of the node properties and the creation of the PD bonds, the

static analysis implementation is performed. The procedure requires the assembly of

the global RVE stiffness matrix and the subsequent application of the boundary condi-

tions, which are imposed on a volume of boundary layers surrounding the RVE domain

with a depth equalling the horizon. The implementation of boundary layers makes it330

possible for all the nodes inside the RVE domain to possess a complete horizon, there-

fore eliminating the PD surface effect. Displacement boundary conditions are enforced

to all the nodes in the external boundary layers. The value of the displacement in the

layers is defined through the following relation:

ui = "ijxj , (17)

where "ij are the components of the average strain tensor, and xj represents the rela-335

tive distance between the selected node and the centre of the RVE domain, which is

located at coordinates (0, 0) μm. The material elastic constants are therefore computed

by imposing two sets of displacement boundary conditions, i.e., uniaxial strain along

x-direction, such that:

⎧⎪⎪⎨⎪⎪⎩

"11 ≠ 0,

"22 = 0,

"12 = 0,

(18)

and uniaxial strain along y-direction, such that:340

⎧⎪⎪⎨⎪⎪⎩

"11 = 0,

"22 ≠ 0,

"12 = 0.

(19)
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The two sets of boundary conditions in (18) and (19) are sufficient to obtain the effective

tensile modulus and Poisson’s ratio of the material. Following the imposition of the

boundary conditions, the corresponding reaction forces are computed.

4.1.4. Estimation of the effective material properties

The stress-strain relation for macroscopically isotropic materials under plane stress345

conditions is then employed to evaluate the material elastic constants, aij , such that:

⎡
⎢⎢⎢⎢⎣

�11

�22

�12

⎤
⎥⎥⎥⎥⎦
=

E

1 − �2

⎡
⎢⎢⎢⎢⎣

1 � 0

� 1 0

0 0 1 − �

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

"11

"22

"12

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

a11 a12 0

a21 a22 0

0 0 a33

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

"11

"22

"12

⎤
⎥⎥⎥⎥⎦
, (20)

where �ij are the components of the average stress tensor, which is obtained by dividing

the sum of the reaction forces computed at the nodes where displacements are imposed

by the cross-sectional area of the model, and E and � are the effective tensile modulus

and Poisson’s ratio of the material, respectively. The elastic constants a11 and a21 are

derived by substituting (18) in (20) and employing the corresponding computed reac-

tion forces, whereas the elastic constants a12 and a22 are evaluated by substituting (19)

in (20) and exploiting the corresponding computed reaction forces. Following the eval-

uation of the material elastic constants, the tensile modulus and Poisson’s ratio, for each

of the two load cases considered in this study, are computed by rearranging the system

of equations in (20). In the case of a macroscopically homogeneous and isotropic mate-

rial, such as the one considered in this work, the numerically computed elastic constants

should satisfy the following conditions:

a11 ≈ a22, (21a)

a21 ≈ a12, (21b)

which therefore imply that the numerically computed Poisson’s ratios and tensile moduli

satisfy the following conditions:

�21 ≈ �12 ≈ �, (22a)
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E11 ≈ E22 ≈ E, (22b)

where E11 and �21 are the tensile modulus and Poisson’s ratio obtained by enforcing the

conditions in (18), and E22 and �12 are the tensile modulus and Poisson’s ratio obtained

by imposing the conditions in (19).

4.2. Calibration of the numerical approach350

The proposed approach is calibrated by exploiting the experimental data reported

in [52], where the mechanical properties of specimens composed by D.E.R.™ 332, a

DGEBA-based epoxy resin from Dow Plastics, nanomodified through the addition of

sodium montmorillonite (PGW) from Nanocor Inc. were experimentally investigated.

After assessing its capabilities, the numerical approach is employed to numerically355

compute the effective tensile modulus of the nanocomposite configurations described

in Section 3. As mentioned in Section 4.1.2, the proposed strategy implements an inter-

face factor �int which must be calibrated for each case study to ensure that the properties

of the material are properly estimated.

4.2.1. Determination of the suitable RVE size and of the required number of RVE real-360

izations

In order to define the RVE size, the proposed procedure aims at identifying the

minimum side length at which the tensile modulus obtained by imposing a uniaxial

strain along x-direction, E11, and the one obtained by imposing the same condition

along y-direction, E22, are approximately equal (cf. (22b)). The identification of the365

minimum side length enables the RVE model to contain a sufficient number of randomly

distributed inclusions to represent a macroscopically uniform and isotropic material. A

set of numerical simulations is therefore performed by keeping constant the value of

the filler weight fraction and the properties of the constituents while increasing the side

length of the square RVE, i.e., LRVE. Table 1 reports the input data used to carry out the370

simulations. As for the material properties, the values of Em, Enf , �m, �nf , ARmean and

ARstd (i.e., the mean value and standard deviation used to model the nanofillers aspect

ratio) are reported in literature studies [52, 55, 60, 61], while the values of �m and �nf

are fixed, since plane stress conditions are considered (see Section 2). A test value of
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Table 1: Input data used to perform the simulations.

Input data Value

Δx = Δy 10 nm

m 8

Em 1.96 GPa

Enf 178 GPa

�m 1160 kg/m3

�nf 1980 kg/m3

�m = �nf 1∕3

ARmean 200

ARstd 30

�int = 10 and a filler weight fraction of 5% wt are employed in all the simulations. The375

condition of uniaxial strain along x-direction is enforced by assigning a value of "11 =

0.01 to the 11-component of the average strain tensor (cf. (18)), whereas the condition

of uniaxial strain along y-direction is imposed by assigning a value of "22 = 0.01 to the

22-component of the average strain tensor (cf. (19)). The study demonstrates that the

RVE should be characterized by a side length of at least 1 μm. As reported in Table 2,380

for LRVE < 0.3 μm, E11 = E22 = Em, which means that the number of inclusions

inside the RVE domain is so low that their presence does not affect the overall material

properties, whereas, for 0.3 ≤ LRVE < 1 μm, E11 and E22 are quite different from each

other, i.e., the condition in (22b) is not satisfied.

As for the required number of RVE realizations, the convergence study aims at iden-385

tifying the number of RVEs required to obtain suitable results in terms of effective

tensile modulus. Table 1 reports the input data used in the simulations, which are per-
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Table 2: Results of the study performed to define the suitable RVE size; each case is averaged over 10 runs.

LRVE [μm] E11 [GPa] E22 [GPa]

0.1 1.96 ± 0.03 1.96 ± 0.00

0.15 1.96 ± 0.05 1.96 ± 0.03

0.3 2.58 ± 0.28 2.38 ± 0.10

0.6 2.60 ± 0.10 2.52 ± 0.11

1 2.58 ± 0.09 2.55 ± 0.08

1.5 2.60 ± 0.06 2.58 ± 0.05

formed by employing an RVE side length of LRVE = 1 μm, a test value of �int = 10,

and a filler weight fraction of 5% wt. As reported in Fig. 9, the analysis demonstrates

that convergence is guaranteed for approximately 100 realizations with a convergence390

error of less than 0.05%.

4.2.2. Calibration procedure

The input data used in the calibration procedure are reported in Table 1. An RVE

side length of LRVE = 1.5 μm is considered in the present study. Each case is aver-

aged over 100 RVE realizations, as suggested by the convergence study presented in395

Section 4.2.1. The nanofiller weight fractions considered in the calibration procedure

are those employed in the experimental investigation carried out in [52], i.e., 0%, 1%,

2.5%, 3.5%, and 5% wt of clay content. The model is calibrated to match the experimen-

tally obtained average value of the tensile modulus of the 5% wt clay-loaded samples.

The results shown in Fig. 10 demonstrate that, for �int = 15, the model properly pre-400

dicts the tensile modulus value not only for the 5% wt case, but for all the clay contents

considered in the study, with a maximum error of about 4%.

After assessing its capabilities, the proposed PD-based method is exploited to com-

pute the effective tensile modulus of the nanocomposite material described in Section 3.

24



Figure 9: Average tensile modulus as a function of RVE realization number.

Figure 10: Calibration of the numerical model to reproduce the experimental results from [52].
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Table 3: Numerically computed average tensile modulus for each material configuration considered in Sec-

tion 3.

Filler weight fraction, wt [%] E [GPa]

0 3.50 ± 0.00

1 3.46 ± 0.01

3 3.37 ± 0.01

5 3.28 ± 0.02

The nanofiller weight fractions considered in the computations are those employed in405

the experimental activity outlined in Section 3, i.e., 0%, 1%, 3%, and 5% wt of clay con-

tent. The results of the calibration procedure, which are reported in Table 3 in terms

of average values of the tensile modulus and corresponding standard deviations, are

then used as input parameters for the numerical investigation of nanocomposite frac-

ture toughness presented in Section 5.410

5. FEM-PD coupling approach for nanocomposite fracture toughness modelling

In the following, the fracture behaviour of polymer/clay nanocomposites is studied

by exploiting the FEM-PD coupling strategy introduced in [43] and [44]. In the first

part of the section, the modelling procedure is discussed in detail, while, in the second

part, the numerical method is calibrated by exploiting the experimental results reported415

in Section 3.2.

5.1. Modelling procedure

5.1.1. FEM-PD coupled model generation

A simplified version of the standard CT specimen (see [41]) is modelled to study the

fracture toughness of polymer-based nanocomposites as a function of the clay content.420

The IH-PD model introduced in [40] is employed in the region where the specimen pre-
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Figure 11: FEM-PD coupled model of the CT specimen used to simulate mode I fracture tests.

crack is likely to propagate, whereas the remaining parts of the domain are described

using FEM.

In the CT specimen model represented in Fig. 11, the FEM region, FEM , is mod-

elled as fully homogeneous. The effective tensile modulus assigned to the FEM ele-425

ments is obtained by exploiting the homogenization approach presented in Section 4.

As for the PD region, PD, the mechanical properties of the PD bonds are modelled

through the procedure described in [40]. This approach does not require the explicit

representation of the material microstructure, but it just needs information regarding

the volume fractions of the material constituents to calibrate the model. The stochas-430

tic assignment of the bond properties generates a model which is heterogeneous at the

selected horizon scale, while being homogeneous at larger scales, since the material

is assumed to be macroscopically homogeneous. Therefore, the volume fractions of

the constituents are constant throughout the nanocomposite. Thanks to this innovative

approach, small-scale heterogeneity is maintained at a computational cost comparable435

to that of commonly used fully homogenized models. The procedure generates three
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types of bonds: matrix-matrix, nanofiller-nanofiller, and matrix-nanofiller, or interface,

bonds. The tensile modulus of the matrix and the one of the nanofiller, i.e., Em and

Enf , are assigned to the matrix-matrix and nanofiller-nanofiller bonds, respectively,

while the stiffness of the interface bonds is defined through the harmonic averaging440

method, as suggested in [40]:

Eint =
[
1

2

(
Em

−1 + Enf
−1
)]−1

. (23)

As for the critical energy release rate values, which are employed for the computa-

tion of the critical stretches of the different bonds, the following assumptions are made:

the critical energy release rate of the matrix, i.e., G0m, is assigned to the matrix-matrix

bonds, whereas the critical energy release rates of the nanofiller-nanofiller and interface445

bonds are modelled as a function of the matrix fracture energy, such that:

G0nf = G0int = �G0m, (24)

whereG0nf andG0int are the critical energy release rates of the nanofiller-nanofiller and

interface bonds, respectively, and � represents a fracture energy factor which must be

calibrated through available experimental data to ensure that the fracture toughness of

the material is properly estimated (see Section 5.2). Nanofiller-nanofiller bonds there-450

fore possess the stiffness of the nanofiller material, but not its fracture energy, since,

under the tensile loading conditions typical of CT fracture tests, only the matrix and the

matrix-nanofiller interfaces fail, whereas nanofillers do not break [8, 52].

Following the definition of the properties to be assigned to each kind of bond, the

procedure described in [40] is implemented. In the framework of a FEM-PD coupled455

model, the algorithm proposed in [40] must however be modified to take into account

the presence of the coupling zone, which is characterized by bonds connecting PD nodes

to FEM nodes to which are assigned the same homogenized properties as the ones al-

located to the FEM elements.

5.1.2. Quasi-static solution implementation460

Following the creation of the PD bonds, the quasi-static fracture analysis is imple-

mented. The procedure requires the assembly of the coupled stiffness matrix and the
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subsequent imposition of the boundary conditions. Differently from the RVE model in

Section 4, the prescribed displacements do not need to be applied through a finite vol-

ume of boundary layers, since the FEM-PD coupled configuration in Fig. 11 enables465

the use of classical local boundary conditions.

Considering the linear-brittle constitutive behaviour of the PD bonds implemented

in this work, a structure subjected to an increasing load has a linear behaviour until

the breakage of the first bond. The PD portion of the coupled stiffness matrix needs

then to be modified through the removal of the contribution of the broken bond. After470

this, the structure, characterized by a slightly reduced stiffness, behaves again linearly

until the breakage of the next PD bond. This concept is exploited here to implement a

sequentially linear analysis (SLA), as discussed in [62]. Fig. 12 shows a typical force-

crack mouth opening displacement (CMOD) diagram. Considering that the aim of the

modelling approach is to compute the nanocomposite fracture toughness, the procedure475

can be stopped after the sum of the reaction forces at the nodes where displacements

are imposed reaches its peak value, referred to as Pcr (cf. (12)).

5.2. Calibration of the numerical approach

The proposed approach is calibrated by exploiting the experimental results reported

in Section 3.2, where mode I fracture tests were carried out on CT specimens com-480

posed by epoxy resin nanomodified through the addition of different weight fractions

of montmorillonite Cloisite®15A.

To simulate the mode I fracture tests described in Section 3.2, a simplified CT sam-

ple is modelled by using a two-dimensional plate with an internal PD region, as shown in

Fig. 11. The PD portion of the domain is a rectangle of edge lengths LPDx = 9.88 mm485

andLPDy = 6.68mm, and its centre has coordinates (2.4, 0)mm. The remaining part of

the domain is discretized using four-node square plane strain FEM elements for which

the element stiffness matrix has been evaluated with exact integration [63]. The dis-

cretization of the domain employs a uniform grid, i.e., Δx = Δy. The values of the

plate dimensions and thickness are Lx = 40.4 mm, Ly = 38.8 mm, and ℎ = 5 mm,490

respectively. A typical initial pre-crack length of a = 13 mm is considered in all sim-

ulations. The input data used to perform the simulations are reported in Table 4. The
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Table 4: Input data used to perform the simulations.

Input data Value

Em 3.5 GPa

Enf 178 GPa

�m 1156.5 kg/m3

�nf 1660 kg/m3

�m = �nf 1∕4

G0m 256.4 J/m2

values of Em, Enf , �m, and �nf have been partially obtained from the experimental

activities discussed in Section 3.2 and from experimental investigations reported in lit-

erature [55, 60], while the values of �m and �nf are fixed, since plane strain conditions495

are considered. The value of the critical energy release rate of the matrix, G0m, has been

computed through (14). In the simulations, the value of the interface tensile modulus,

computed through (23), is Eint = 6.86 GPa. Moreover, the effective tensile moduli

reported in Table 3 are employed to model the stiffness of the FEM elements and of the

PD bonds in the coupling zone.500

The two-dimensional plate in Fig. 11 is loaded by imposing an upward vertical

displacement of u2 = 1 μm on the FEM node located at coordinates (−12.27, 9.33)

mm, and a downward vertical displacement of u2 = −1 μm on the FEM node located

at coordinates (−12.27,−9.33) mm. In addition, the plate is constrained so that the two

aforementioned FEM nodes cannot move in the horizontal direction, i.e., u1 = 0 μm.505

Using the SLA procedure outlined in Section 5.1.2, the structural problem is solved

to obtain the vertical nodal reaction forces of the system, which are then exploited to

compute the fracture toughness of the material through (12), where B = ℎ and W =

32.40 mm.

Before proceeding to the calibration phase, a �-convergence study needs to be per-510

30



formed to investigate the performance of the model and to determine the most suitable

horizon size to be employed. The study is carried out by selecting grid spacings of 120,

80, and 60 μm, corresponding to horizon sizes of 480, 320, and 240 μm, respectively.

The value of m is chosen as m = 4 and is kept fixed during the analysis. The nanofiller

weight fraction considered in the convergence study is 0%wt, i.e, the one corresponding515

to a neat epoxy resin material configuration. The results reported in Table 5 indicate that

the material response converges under �-convergence tests, as expected when dealing

with PMB material models for problems with pre-cracks [64]. In light of these results,

an horizon of � = 320 μm and a value of m = 4 are selected to carry out the model

calibration phase. Fig. 12 shows the force-crack mouth opening displacement diagram520

obtained for case (b) in Table 5 after performing 5500 steps of the SLA procedure.

The nanofiller weight fractions considered in the calibration procedure are those em-

ployed in the experimental investigation described in Section 3, i.e., 0%, 1%, 3%, and

5% wt of clay content. In all simulations, each calculation point is averaged over 5 runs,

i.e., over 5 different microstructural realizations of the same material configuration, in525

order to take into account the stochasticity of the model. The model is calibrated to

match the experimentally obtained average value of the fracture toughness of the 3% wt

clay-loaded samples (see Fig. 5). The results reported in Fig. 13 demonstrate that, for

� = 25, the model properly predicts the fracture toughness value not only for the 3% wt

case, but for all the clay contents considered in the study. Considering that the exper-530

imental results reported in Fig. 5 show that, after exceeding a clay content of 3% wt,

the average value of the KIc reached a plateau, the fracture toughness for the 5% wt

case is assumed here to be equal to the one computed for the 3% wt case. As previously

mentioned, this trend is related to the presence of large localized nanofiller aggregates

within the matrix (see Fig. 4), which prevents the fracture toughness to further increase535

and eventually induces a reduction of its value. The extension of the current model

to the simulation of these effects is foreseen for the future. Figs. 14a and 14b show

the damage maps obtained after performing 5500 steps of the SLA procedure for the

neat epoxy resin case and for one microstructure realization of the epoxy/Cloisite®15A

nanocomposite with 3% wt of clay content, respectively. For the neat epoxy case, the540

model simulate the expected straight crack path, whereas, for the 3% wt case, the het-
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Table 5: �-convergence study results.

Coupled model, m = 4 Pcr [N] Diffrel [%]

Case (a), � = 480 μm, Δx = 120 μm 136.05 ∖

Case (b), � = 320 μm, Δx = 80 μm 137.19 0.84

Case (c), � = 240 μm, Δx = 60 μm 137.56 0.27

Figure 12: Force-CMOD diagram obtained for case (b) in Table 5 with an enlarged view of the region near

the peak value of the reaction force. Magenta circles indicate the bond failure points, while straight grey lines

with gradually decreasing slopes represent the progressive reduction of the overall stiffness of the structure.
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Figure 13: Calibration of the numerical model to reproduce the experimental results from Section 3.2.

erogeneous microstructure stochastically created by the modelling approach enables the

reproduction of the experimentally observed crack path tortuosity typical of this class

of materials [52].

6. Conclusions545

This work concerned the modelling of the mechanical properties of nanocompos-

ite materials. The investigation was particularly focused on polymer-based matrices

nanomodified through the addition of nanoclay platelets, a class of materials which

has recently attracted the interest of the scientific community due to its enhanced me-

chanical, thermal, and barrier properties, and to its wide range of applications. A550

peridynamics-based representative volume element approach was exploited to model

the effective tensile modulus of polymer-based nanocomposites. The results of the

analysis were then used as input parameters for the numerical investigation of the effect

of the nanomodification on the fracture toughness of nanocomposites, which was per-

formed by exploiting a FEM-PD coupling strategy. In the FEM-PD coupled model, the555

effective tensile moduli obtained through the PD-based RVE approach were used to de-

fine the homogenized properties of the FEM region and of the coupling zone. The crack

tip region was instead described through an intermediately-homogenized peridynamic
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(a)

(b)

Figure 14: Damage maps obtained after 5500 steps of the SLA procedure for (a) the neat epoxy resin, and

(b) one microstructure realization of the epoxy/Cloisite®15A nanocomposite with 3% wt of clay content. For

clarity, only the PD portion of the domain is shown in the figures.
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model capable of preserving the small-scale heterogeneity of the material by generating

a stochastic microstructure. The proposed computational tools were calibrated by ex-560

ploiting experimental data available in literature, and by performing tensile and fracture

tests on clay-loaded epoxy resins.
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