The ActiVis project aims to deliver a mobile system that is able to guide a person with visual impairments towards a target object or area in an unknown indoor environment. For this, it uses new developments in object detection, mobile computing, action generation and human-computer interfacing to interpret the user’s surroundings and present effective guidance directions. Our approach to direction generation uses a Partially Observable Markov Decision Process (POMDP) to track the system’s state and output the optimal location to be investigated. This system includes an object detector and an audio-based guidance interface to provide a complete active search pipeline. The ActiVis system was evaluated in a set of experiments showing better performance than a simpler unguided case.

ActiVis: Mobile object detection and active guidance for people with visual impairments

Ghidoni S.;Bellotto N.
2019

Abstract

The ActiVis project aims to deliver a mobile system that is able to guide a person with visual impairments towards a target object or area in an unknown indoor environment. For this, it uses new developments in object detection, mobile computing, action generation and human-computer interfacing to interpret the user’s surroundings and present effective guidance directions. Our approach to direction generation uses a Partially Observable Markov Decision Process (POMDP) to track the system’s state and output the optimal location to be investigated. This system includes an object detector and an audio-based guidance interface to provide a complete active search pipeline. The ActiVis system was evaluated in a set of experiments showing better performance than a simpler unguided case.
2019
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
20th International Conference on Image Analysis and Processing, ICIAP 2019
978-3-030-30644-1
978-3-030-30645-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3342233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact