This paper addresses the problem of comparing different variants of the same process. We aim to detect relevant differences between processes based on what was recorded in event logs. We use transition systems to model behavior and to highlight differences. Transition systems are annotated with measurements, used to compare the behavior in the variants. The results are visualized as transitions systems, which are colored to pinpoint the significant differences. The approach has been implemented in ProM, and the implementation is publicly available. We validated our approach by performing experiments using real-life event data. The results show how our technique is able to detect relevant differences undetected by previous approaches while it avoids detecting insignificant differences.

A visual approach to spot statistically-significant differences in event logs based on process metrics

De Leoni, Massimiliano;
2016

Abstract

This paper addresses the problem of comparing different variants of the same process. We aim to detect relevant differences between processes based on what was recorded in event logs. We use transition systems to model behavior and to highlight differences. Transition systems are annotated with measurements, used to compare the behavior in the variants. The results are visualized as transitions systems, which are colored to pinpoint the significant differences. The approach has been implemented in ProM, and the implementation is publicly available. We validated our approach by performing experiments using real-life event data. The results show how our technique is able to detect relevant differences undetected by previous approaches while it avoids detecting insignificant differences.
2016
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9783319396958
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3300646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 29
  • OpenAlex ND
social impact