In this paper, we propose a ROS-based system to reconstruct the motion of human upper limb based on data collected with two Myo armbands in a hybrid manner. The inertial sensors' information are fused to reconstruct shoulder and elbow kinematics. Electromyographic (EMG) signals are used to estimate wrist kinematics, to fully capture the motion of the 5-DoF (degree of freedom) user's arm. The system shows a good pose estimation accuracy compared to the XSens suit with an average RMSE of 6.61 ° ±3.31 ° and a R 2 of 0.90±0.07.
Dual-Myo Real-Time Control of a Humanoid Arm for Teleoperation
TORTORA, STEFANO
Writing – Original Draft Preparation
;Moro, MicheleSupervision
;Menegatti, EmanueleSupervision
2019
Abstract
In this paper, we propose a ROS-based system to reconstruct the motion of human upper limb based on data collected with two Myo armbands in a hybrid manner. The inertial sensors' information are fused to reconstruct shoulder and elbow kinematics. Electromyographic (EMG) signals are used to estimate wrist kinematics, to fully capture the motion of the 5-DoF (degree of freedom) user's arm. The system shows a good pose estimation accuracy compared to the XSens suit with an average RMSE of 6.61 ° ±3.31 ° and a R 2 of 0.90±0.07.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.