Over the past few years, a huge number of distributed camera calibration strategies have been proposed for video surveillance and monitoring systems involving mobile terminals. Many of the proposed solutions rely on consensus-based algorithms, which aim at estimating the configuration of the network via a message passing protocol. In this paper we propose an improved consensus-based distributed camera calibration strategy that exploits a robust initialization, together with a pruning protocol to remove faulty links which could propagate excessively-noisy information through the network reducing the convergence time. The proposed solution seems to improve the state-of-the-art strategies in terms of accuracy, convergence speed, and computational complexity.
Improving Consensus-Based Distributed Camera Calibration Via Edge Pruning and Graph Traversal Initialization
Michieletto, G.;Milani, S.;Cenedese, A.;Baggio, G.
2018
Abstract
Over the past few years, a huge number of distributed camera calibration strategies have been proposed for video surveillance and monitoring systems involving mobile terminals. Many of the proposed solutions rely on consensus-based algorithms, which aim at estimating the configuration of the network via a message passing protocol. In this paper we propose an improved consensus-based distributed camera calibration strategy that exploits a robust initialization, together with a pruning protocol to remove faulty links which could propagate excessively-noisy information through the network reducing the convergence time. The proposed solution seems to improve the state-of-the-art strategies in terms of accuracy, convergence speed, and computational complexity.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.