This paper describes a face recognition-based people tracking and re-identification system for RGB-D camera networks. The system tracks people and learns their faces online to keep track of their identities even if they move out from the camera's field of view once. For robust people re-identification, the system exploits the combination of a deep neural network- based face representation and a Bayesian inference-based face classification method. The system also provides a predefined people identification capability: it associates the online learned faces with predefined people face images and names to know the people's whereabouts, thus, allowing a rich human-system interaction. Through experiments, we validate the re-identification and the predefined people identification capabilities of the system and show an example of the integration of the system with a mobile robot. The overall system is built as a Robot Operating System (ROS) module. As a result, it simplifies the integration with the many existing robotic systems and algorithms which use such middleware. The code of this work has been released as open-source in order to provide a baseline for the future publications in this field.
People tracking and re-identification by face recognition for RGB-D camera networks
Koide, Kenji;Menegatti, Emanuele;Carraro, Marco;Munaro, Matteo;
2017
Abstract
This paper describes a face recognition-based people tracking and re-identification system for RGB-D camera networks. The system tracks people and learns their faces online to keep track of their identities even if they move out from the camera's field of view once. For robust people re-identification, the system exploits the combination of a deep neural network- based face representation and a Bayesian inference-based face classification method. The system also provides a predefined people identification capability: it associates the online learned faces with predefined people face images and names to know the people's whereabouts, thus, allowing a rich human-system interaction. Through experiments, we validate the re-identification and the predefined people identification capabilities of the system and show an example of the integration of the system with a mobile robot. The overall system is built as a Robot Operating System (ROS) module. As a result, it simplifies the integration with the many existing robotic systems and algorithms which use such middleware. The code of this work has been released as open-source in order to provide a baseline for the future publications in this field.File | Dimensione | Formato | |
---|---|---|---|
ecmr2017.pdf
accesso aperto
Tipologia:
Preprint (submitted version)
Licenza:
Creative commons
Dimensione
3.1 MB
Formato
Adobe PDF
|
3.1 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.