Agricultural terraces are often subject to degradation issues related to water movement. A better understanding of the main hydrological processes that govern surface and subsurface water flow pathways and that are responsible for terrace failure and dry-stone wall collapse is essential for appropriate water resource management and rural landscape maintenance in terraced areas. However, a clear conceptualization of different hydrological functioning related to wall instability issues is still missing. In this study, we monitored a terrace system in a hilly site of central Italy cultivated with vineyards. We adopted a multidisciplinary approach based on soil analysis, different geophysical techniques, hydrological monitoring, high-resolution grid terrain analysis and field experiments (infiltration and flooding tests) aiming to: (i) obtain new information of terrace soil and subsoil structure; (ii) test the hypothesis on wall instability based on the formation of preferential flow and water accumulation behind the wall; and (iii) develop a conceptual model of water circulation in agricultural terraces. Our results indicate that terrace soil was highly heterogeneous, including discontinuities and piping systems that facilitated a rapid infiltration and the development of fast subsurface flow. Groundwater rise did not occur, as observed in other terraced sites, but infiltrated water accumulated behind dry-stone walls, increasing pore water pressure and inducing wall bulging and instability. Our findings provided new field evidences of water circulation and led to the definition of a novel paradigm of hydrological functioning of farming terraced systems for addressing more efficient management and maintenance issues in these vulnerable landscapes. Copyright © 2017 John Wiley & Sons, Ltd.

Conceptualization of Water Flow Pathways in Agricultural Terraced Landscapes

Giorgio Cassiani;Jacopo Boaga;Rita Deiana;Paolo Tarolli
2018

Abstract

Agricultural terraces are often subject to degradation issues related to water movement. A better understanding of the main hydrological processes that govern surface and subsurface water flow pathways and that are responsible for terrace failure and dry-stone wall collapse is essential for appropriate water resource management and rural landscape maintenance in terraced areas. However, a clear conceptualization of different hydrological functioning related to wall instability issues is still missing. In this study, we monitored a terrace system in a hilly site of central Italy cultivated with vineyards. We adopted a multidisciplinary approach based on soil analysis, different geophysical techniques, hydrological monitoring, high-resolution grid terrain analysis and field experiments (infiltration and flooding tests) aiming to: (i) obtain new information of terrace soil and subsoil structure; (ii) test the hypothesis on wall instability based on the formation of preferential flow and water accumulation behind the wall; and (iii) develop a conceptual model of water circulation in agricultural terraces. Our results indicate that terrace soil was highly heterogeneous, including discontinuities and piping systems that facilitated a rapid infiltration and the development of fast subsurface flow. Groundwater rise did not occur, as observed in other terraced sites, but infiltrated water accumulated behind dry-stone walls, increasing pore water pressure and inducing wall bulging and instability. Our findings provided new field evidences of water circulation and led to the definition of a novel paradigm of hydrological functioning of farming terraced systems for addressing more efficient management and maintenance issues in these vulnerable landscapes. Copyright © 2017 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3245023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 42
  • OpenAlex ND
social impact