Nuclear Factor kappaB (NF-κB) plays a very important role in the control of gene expression and is deeply involved in several human pathologies. Accordingly, molecules targeting NF-κB dependent biological functions are considered of great interest. Virtual screening of furocoumarin libraries against NF-κB p50 allowed to rank compounds in respect to their expected ability to bind NF-κB and the identified compound might be considered for the development of analogs to be tested for biological activity on inhibition of NF-κB/DNA complex formation. The data reported in the present paper suggest that, following this approach, the best ranked compounds identified by virtual screening (a) strongly bind in silico to NF-κB and (b) efficiently inhibit the molecular interactions between 32P-labeled NF-κB double stranded DNA and p50 or p50/p65 complex. These data allowed to develop a novel lead of great interest for inhibiting NF-κB dependent biological functions. This novel molecule (compound 2), bearing a methyl group in the 9 position of the psoralen nucleus, exhibits high efficiency in inhibiting NF-κB/DNA interactions. In addition, we found that compound 2 is a potent inhibitor of IL-8 gene expression in TNF-α treated IB3-1 cystic fibrosis cells. Taken together, our data indicate that compound 2 might find an important place in the set of molecules of interest for the development of pharmaceutical strategies against the inflammatory phenotype of cystic fibrosis.
Development of a Novel Furocoumarin Derivative Inhibiting NF-kB Dependent Biological Functions: Design, Synthesis and Biological Effects
CHILIN, ADRIANA;MARZARO, GIOVANNI;GUIOTTO, ADRIANO;
2011
Abstract
Nuclear Factor kappaB (NF-κB) plays a very important role in the control of gene expression and is deeply involved in several human pathologies. Accordingly, molecules targeting NF-κB dependent biological functions are considered of great interest. Virtual screening of furocoumarin libraries against NF-κB p50 allowed to rank compounds in respect to their expected ability to bind NF-κB and the identified compound might be considered for the development of analogs to be tested for biological activity on inhibition of NF-κB/DNA complex formation. The data reported in the present paper suggest that, following this approach, the best ranked compounds identified by virtual screening (a) strongly bind in silico to NF-κB and (b) efficiently inhibit the molecular interactions between 32P-labeled NF-κB double stranded DNA and p50 or p50/p65 complex. These data allowed to develop a novel lead of great interest for inhibiting NF-κB dependent biological functions. This novel molecule (compound 2), bearing a methyl group in the 9 position of the psoralen nucleus, exhibits high efficiency in inhibiting NF-κB/DNA interactions. In addition, we found that compound 2 is a potent inhibitor of IL-8 gene expression in TNF-α treated IB3-1 cystic fibrosis cells. Taken together, our data indicate that compound 2 might find an important place in the set of molecules of interest for the development of pharmaceutical strategies against the inflammatory phenotype of cystic fibrosis.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.