Background: In the area of protein structure prediction, recently a lot of effort has gone into the development of Model Quality Assessment Programs (MQAPs). MQAPs distinguish high quality protein structure models from inferior models. Here, we propose a new method to use an MQAP to improve the quality of models. With a given target sequence and template structure, we construct a number of different alignments and corresponding models for the sequence. The quality of these models is scored with an MQAP and used to choose the most promising model. An SVM-based selection scheme is suggested for combining MQAP partial potentials, in order to optimize for improved model selection. Results: The approach has been tested on a representative set of proteins. The ability of the method to improve models was validated by comparing the MQAP-selected structures to the native structures with the model quality evaluation program TM-score. Using the SVM-based model selection, a significant increase in model quality is obtained (as shown with a Wilcoxon signed rank test yielding p-values below 10(-15)). The average increase in TMscore is 0.016, the maximum observed increase in TM-score is 0.29. Conclusion: In template-based protein structure prediction alignment is known to be a bottleneck limiting the overall model quality. Here we show that a combination of systematic alignment variation and modern model scoring functions can significantly improve the quality of alignment-based models.

Improving the quality of protein structure models by selecting from alignment alternatives

TOPPO, STEFANO;TOSATTO, SILVIO
2006

Abstract

Background: In the area of protein structure prediction, recently a lot of effort has gone into the development of Model Quality Assessment Programs (MQAPs). MQAPs distinguish high quality protein structure models from inferior models. Here, we propose a new method to use an MQAP to improve the quality of models. With a given target sequence and template structure, we construct a number of different alignments and corresponding models for the sequence. The quality of these models is scored with an MQAP and used to choose the most promising model. An SVM-based selection scheme is suggested for combining MQAP partial potentials, in order to optimize for improved model selection. Results: The approach has been tested on a representative set of proteins. The ability of the method to improve models was validated by comparing the MQAP-selected structures to the native structures with the model quality evaluation program TM-score. Using the SVM-based model selection, a significant increase in model quality is obtained (as shown with a Wilcoxon signed rank test yielding p-values below 10(-15)). The average increase in TMscore is 0.016, the maximum observed increase in TM-score is 0.29. Conclusion: In template-based protein structure prediction alignment is known to be a bottleneck limiting the overall model quality. Here we show that a combination of systematic alignment variation and modern model scoring functions can significantly improve the quality of alignment-based models.
2006
File in questo prodotto:
File Dimensione Formato  
1471-2105-7-364.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 533.75 kB
Formato Adobe PDF
533.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2449295
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact