The next generation of tools for rehabilitation robotics requires advanced human-robot interfaces able to activate the device as soon as patient's motion intention is raised. This paper investigated the suitability of Support Vector Machine (SVM) classifiers for identification of locomotion intentions from surface electromyography (sEMG) data. A phase-dependent approach, based on foot contact and foot push off events, was employed in order to contextualize muscle activation signals. Good accuracy is demonstrated on experimental data from three healthy subjects. Classification has also been tested for different subsets of EMG features and muscles, aiming to identify a minimal setup required for the control of an EMG-based exoskeleton for rehabilitation purposes.
SVM classification of locomotion modes using surface electromyography for applications in rehabilitation robotics
CESERACCIU, ELENA;REGGIANI, MONICA;SAWACHA, ZIMI;SARTORI, MASSIMO;PAGELLO, ENRICO
2010
Abstract
The next generation of tools for rehabilitation robotics requires advanced human-robot interfaces able to activate the device as soon as patient's motion intention is raised. This paper investigated the suitability of Support Vector Machine (SVM) classifiers for identification of locomotion intentions from surface electromyography (sEMG) data. A phase-dependent approach, based on foot contact and foot push off events, was employed in order to contextualize muscle activation signals. Good accuracy is demonstrated on experimental data from three healthy subjects. Classification has also been tested for different subsets of EMG features and muscles, aiming to identify a minimal setup required for the control of an EMG-based exoskeleton for rehabilitation purposes.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.