An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular junctions of Drosophila melanogaster larvae expressing SNAP-25 in which Arg206 had been replaced by alanine. Electrophysiological recordings of spontaneous and evoked neurotransmitter release under different conditions as well as testing for the assembly of the SNARE complex indicate that this residue, which is at the P(1)' position of the botulinum neurotoxin A cleavage site, plays an essential role in neuroexocytosis. Computer graphic modelling suggests that this arginine residue mediates protein-protein contacts within a rosette of SNARE complexes that assembles to mediate the fusion of synaptic vesicles with the presynaptic plasma membrane.
Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction
MEGIGHIAN, ARAM;RIGONI, MICHELA;ROSSETTO, ORNELLA;MONTECUCCO, CESARE;ZORDAN, MAURO AGOSTINO
2010
Abstract
An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular junctions of Drosophila melanogaster larvae expressing SNAP-25 in which Arg206 had been replaced by alanine. Electrophysiological recordings of spontaneous and evoked neurotransmitter release under different conditions as well as testing for the assembly of the SNARE complex indicate that this residue, which is at the P(1)' position of the botulinum neurotoxin A cleavage site, plays an essential role in neuroexocytosis. Computer graphic modelling suggests that this arginine residue mediates protein-protein contacts within a rosette of SNARE complexes that assembles to mediate the fusion of synaptic vesicles with the presynaptic plasma membrane.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.