In this paper, we present a peculiar characteristic of nanocrystal (NC) memory (NCM) cells: The programming (P) windows measured in linear and subthreshold regions are different. A floating-gate Flash memory cell with a similar structure does not show the same behavior, and the P window (PW) is independent of the current level of the extrapolation, as expected. By performing 2-D TCAD simulations, we demonstrated that this characteristic of NCM cells is due to the localization of the charge into the NCs. We investigate the correlation between the difference of the PWs in linear and subthreshold regions and the number, width, and position of the NCs.

Effects of the Localization of the Charge in Nanocrystal Memory Cells

GASPERIN, ALBERTO;PACCAGNELLA, ALESSANDRO
2009

Abstract

In this paper, we present a peculiar characteristic of nanocrystal (NC) memory (NCM) cells: The programming (P) windows measured in linear and subthreshold regions are different. A floating-gate Flash memory cell with a similar structure does not show the same behavior, and the P window (PW) is independent of the current level of the extrapolation, as expected. By performing 2-D TCAD simulations, we demonstrated that this characteristic of NCM cells is due to the localization of the charge into the NCs. We investigate the correlation between the difference of the PWs in linear and subthreshold regions and the number, width, and position of the NCs.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/2379718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact