Free water surface constructed wetlands can be effective systems for contaminant removal, but their performance is sensitive to interactions among flow dynamics, vegetation, and bed topography. This study presents a numerical investigation into how heterogeneous bed topographies influence hydraulic and contaminant transport behavior in a rectangular wetland. Topographies were generated using a correlated pseudo-random pattern generator, and flow and solute transport were simulated with a two-dimensional, depth-averaged model. Residence time distributions and contaminant removal efficiencies were analyzed as functions of the variance and correlation length of the bed elevation. Results indicate that increasing the variability of bed elevation leads to greater dispersion in residence times, reducing hydraulic efficiency. Moreover, as the variability of bed elevation increases, so does the spread in hydraulic performance among wetlands with the same statistical topographic parameters, indicating a growing sensitivity of flow behavior to the specific spatial configurations of bed features. Larger spatial correlation lengths were found to reduce the residence time variance, as shorter correlation lengths promoted complex flow structures with lateral dead zones and internal islands. Contaminant removal efficiency, evaluated under the assumption of uniform vegetation, was influenced by bed topography, with variations becoming more pronounced under conditions of lower vegetation density. The results underscore the significant impact of bed topography on hydraulic behavior and contaminant removal performance, highlighting the importance of careful topographic design to ensure high wetland efficiency.
Model Insights into the Role of Bed Topography on Wetland Performance
Santovito, G;Marion, A
2025
Abstract
Free water surface constructed wetlands can be effective systems for contaminant removal, but their performance is sensitive to interactions among flow dynamics, vegetation, and bed topography. This study presents a numerical investigation into how heterogeneous bed topographies influence hydraulic and contaminant transport behavior in a rectangular wetland. Topographies were generated using a correlated pseudo-random pattern generator, and flow and solute transport were simulated with a two-dimensional, depth-averaged model. Residence time distributions and contaminant removal efficiencies were analyzed as functions of the variance and correlation length of the bed elevation. Results indicate that increasing the variability of bed elevation leads to greater dispersion in residence times, reducing hydraulic efficiency. Moreover, as the variability of bed elevation increases, so does the spread in hydraulic performance among wetlands with the same statistical topographic parameters, indicating a growing sensitivity of flow behavior to the specific spatial configurations of bed features. Larger spatial correlation lengths were found to reduce the residence time variance, as shorter correlation lengths promoted complex flow structures with lateral dead zones and internal islands. Contaminant removal efficiency, evaluated under the assumption of uniform vegetation, was influenced by bed topography, with variations becoming more pronounced under conditions of lower vegetation density. The results underscore the significant impact of bed topography on hydraulic behavior and contaminant removal performance, highlighting the importance of careful topographic design to ensure high wetland efficiency.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.