Advancements in battery technology have accelerated the adoption of Electric Vehicles (EVs) due to their environmental benefits. However, their growing sophistication introduces security and privacy challenges. Often seen as mere operational data, battery consumption patterns can unintentionally reveal critical information exploitable for malicious purposes. These risks go beyond privacy, impacting vehicle security and regulatory compliance. Despite these concerns, current research has largely overlooked the broader implications of battery consumption data exposure. As EVs integrate further into smart transportation networks, addressing these gaps is crucial to ensure their safety, reliability, and resilience. In this work, we introduce a novel class of side-channel attacks that exploit EV battery data to extract sensitive user information. Leveraging only battery consumption patterns, we demonstrate a methodology to accurately identify the EV driver and their driving style, determine the number of occupants, and infer the vehicle’s start and end locations when user habits are known. We utilize several machine learning models and feature extraction techniques to analyze EV power consumption patterns, validating our approach on simulated and real-world datasets collected from actual drivers. Our attacks achieve an average success rate of 95.4% across all attack objectives. Our findings highlight the privacy risks associated with EV battery data, emphasizing the need for stronger protections to safeguard user privacy and vehicle security.

Leaky Batteries: A Novel Set of Side-Channel Attacks on Electric Vehicles

Marchiori, Francesco;Conti, Mauro
2025

Abstract

Advancements in battery technology have accelerated the adoption of Electric Vehicles (EVs) due to their environmental benefits. However, their growing sophistication introduces security and privacy challenges. Often seen as mere operational data, battery consumption patterns can unintentionally reveal critical information exploitable for malicious purposes. These risks go beyond privacy, impacting vehicle security and regulatory compliance. Despite these concerns, current research has largely overlooked the broader implications of battery consumption data exposure. As EVs integrate further into smart transportation networks, addressing these gaps is crucial to ensure their safety, reliability, and resilience. In this work, we introduce a novel class of side-channel attacks that exploit EV battery data to extract sensitive user information. Leveraging only battery consumption patterns, we demonstrate a methodology to accurately identify the EV driver and their driving style, determine the number of occupants, and infer the vehicle’s start and end locations when user habits are known. We utilize several machine learning models and feature extraction techniques to analyze EV power consumption patterns, validating our approach on simulated and real-world datasets collected from actual drivers. Our attacks achieve an average success rate of 95.4% across all attack objectives. Our findings highlight the privacy risks associated with EV battery data, emphasizing the need for stronger protections to safeguard user privacy and vehicle security.
2025
Lecture Notes in Computer Science
20th International Conference on Availability, Reliability and Security, ARES 2025
9783032006233
9783032006240
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3561904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact