Motivation: In recent years, many disorder predictors have been developed to identify intrinsically disordered regions (IDRs) in proteins, achieving high accuracy. However, it may be difficult to interpret differences in predictions across methods. Consensus methods offer a simple solution, highlighting reliable predictions while filtering out uncertain positions. Here, we present a new version of MobiDB-lite, a consensus method designed to predict long IDRs and classify them based on compositional biases and conformational properties. Results: MobiDB-lite 4.0 pipeline was optimized to be ten times faster than the previous version. It now provides compactness annotations based on predicted apparent scaling exponent. The newly added features and disorder subclassifications allow the users to get a comprehensive insight into the protein’s function and characteristics. MobiDB-lite 4.0 is integrated into the MobiDB and DisProt databases. A version without the compactness predictor is integrated into InterProScan, propagating MobiDB-lite annotations to UniProtKB. Availability and implementation: The MobiDB-lite 4.0 source code and a Docker container are available from the GitHub repository: https://github.com/BioComputingUP/MobiDB-lite.
MobiDB-lite 4.0: faster prediction of intrinsic protein disorder and structural compactness
Mehdiabadi, Mahta;Tosatto, Silvio C E
;Piovesan, Damiano
2025
Abstract
Motivation: In recent years, many disorder predictors have been developed to identify intrinsically disordered regions (IDRs) in proteins, achieving high accuracy. However, it may be difficult to interpret differences in predictions across methods. Consensus methods offer a simple solution, highlighting reliable predictions while filtering out uncertain positions. Here, we present a new version of MobiDB-lite, a consensus method designed to predict long IDRs and classify them based on compositional biases and conformational properties. Results: MobiDB-lite 4.0 pipeline was optimized to be ten times faster than the previous version. It now provides compactness annotations based on predicted apparent scaling exponent. The newly added features and disorder subclassifications allow the users to get a comprehensive insight into the protein’s function and characteristics. MobiDB-lite 4.0 is integrated into the MobiDB and DisProt databases. A version without the compactness predictor is integrated into InterProScan, propagating MobiDB-lite annotations to UniProtKB. Availability and implementation: The MobiDB-lite 4.0 source code and a Docker container are available from the GitHub repository: https://github.com/BioComputingUP/MobiDB-lite.File | Dimensione | Formato | |
---|---|---|---|
mobidblite4.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
943.24 kB
Formato
Adobe PDF
|
943.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.