Hereditary-Motor-Neuropathies (dHMNs) are clinically and genetically heterogeneous neurological disorders characterized by degeneration of peripheral motoneurons. We previously identified two sigma-1 receptor (Sigma-1R) variants (p.E138Q; p.E150K) in dHMN Italian patients that behave as “loss-of-function” mutations in neuroblastoma cell lines. Here, we characterize the functional effects of Sigma-1R mutation in primary fibroblasts from homozygous patients bearing the E150K mutation, and matched controls, by performing biochemical, gene expression, immunofluorescence and Ca2+ imaging analysis. Our results show that Sigma-1R expression and distribution is significantly altered in patient fibroblasts. Moreover, patient cells present a general derangement of cell homeostasis as revealed by impairment of global Ca2+ dynamics, disorganization of the ER-mitochondria tethers, enhancement of the autophago-lysosomal pathway and blunting of mitochondrial aerobic metabolism compared to controls. These findings highlight the crucial role of Sigma-1R in the maintenance of cell and protein homeostasis, inter-organelle communication and intracellular Ca2+ signalling, supporting the notion that Sigma-1R is protective for motor neuron activity and its down-regulation and/or loss-of-function, as in the case of the E150K mutation, might play the key role in the neuronal degeneration in dHMN patients.

Mutated sigma-1R disrupts cell homeostasis in dHMN patient cells

Zanin, Sofia;Chiossi, Federico;Vazza, Giovanni
;
Rizzuto, Rosario
;
2025

Abstract

Hereditary-Motor-Neuropathies (dHMNs) are clinically and genetically heterogeneous neurological disorders characterized by degeneration of peripheral motoneurons. We previously identified two sigma-1 receptor (Sigma-1R) variants (p.E138Q; p.E150K) in dHMN Italian patients that behave as “loss-of-function” mutations in neuroblastoma cell lines. Here, we characterize the functional effects of Sigma-1R mutation in primary fibroblasts from homozygous patients bearing the E150K mutation, and matched controls, by performing biochemical, gene expression, immunofluorescence and Ca2+ imaging analysis. Our results show that Sigma-1R expression and distribution is significantly altered in patient fibroblasts. Moreover, patient cells present a general derangement of cell homeostasis as revealed by impairment of global Ca2+ dynamics, disorganization of the ER-mitochondria tethers, enhancement of the autophago-lysosomal pathway and blunting of mitochondrial aerobic metabolism compared to controls. These findings highlight the crucial role of Sigma-1R in the maintenance of cell and protein homeostasis, inter-organelle communication and intracellular Ca2+ signalling, supporting the notion that Sigma-1R is protective for motor neuron activity and its down-regulation and/or loss-of-function, as in the case of the E150K mutation, might play the key role in the neuronal degeneration in dHMN patients.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--974666711.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3556322
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact