We conducted an extensive geophysical field campaign using ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) in a former military area at the archaeological site of Nora (South-Western Sardinia). The purpose was to identify a Phoenician, and then Punic and Roman, necropolis of considerable interest, subject of a long-term investigation and currently under excavation. In the same area other buried structures, including a Roman road, were also investigated. The ERT and GPR surveys (the latter conducted with two different frequencies - 200 and 600 MHz), carried out in a sector where the Roman road was known to exist, did not reveal any clear evidence of the presence of this structure. However, the road was then found, by direct excavation, at 0.5 m depth. The failure in the identification of the road at this shallow depth has therefore led to hypothesize possible phenomena of high GPR signal attenuation and/or destructive interference related to the geometry and specific characteristics of the system. We performed synthetic GPR modeling by using the information provided by the excavation and constrained, in terms of electrical conductivity, by ERT measurements. The preliminary results of this simulation confirm the hypothesis of interference and attenuation phenomena, suggesting how the GPR signal may fail to provide an apparently simple piece of information at this archaeological site.

Evidence of attenuation and interference phenomena in GPR signals for archaeological application

Barone, Ilaria;Rossi, Matteo;Deiana, Rita;Mazzariol, Alessandro
2021

Abstract

We conducted an extensive geophysical field campaign using ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) in a former military area at the archaeological site of Nora (South-Western Sardinia). The purpose was to identify a Phoenician, and then Punic and Roman, necropolis of considerable interest, subject of a long-term investigation and currently under excavation. In the same area other buried structures, including a Roman road, were also investigated. The ERT and GPR surveys (the latter conducted with two different frequencies - 200 and 600 MHz), carried out in a sector where the Roman road was known to exist, did not reveal any clear evidence of the presence of this structure. However, the road was then found, by direct excavation, at 0.5 m depth. The failure in the identification of the road at this shallow depth has therefore led to hypothesize possible phenomena of high GPR signal attenuation and/or destructive interference related to the geometry and specific characteristics of the system. We performed synthetic GPR modeling by using the information provided by the excavation and constrained, in terms of electrical conductivity, by ERT measurements. The preliminary results of this simulation confirm the hypothesis of interference and attenuation phenomena, suggesting how the GPR signal may fail to provide an apparently simple piece of information at this archaeological site.
2021
2021 11th International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2021
11th International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3555997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact