The handling and fluidization of amorphous soft solids, such as emulsions, foams, or gels, is crucial in many technological processes. This is generally achieved by applying mechanical stress that overcomes a critical threshold, known as yield stress, below which these systems behave as elastic solids. However, the interaction with the walls can facilitate the transition from solid to fluid by activating rearrangements of the fluid constituents close to the wall, resulting in increased fluidity of the system up to distances greater than the spatial scale of the rearrangements. We address the impact of wedge-shaped microroughness on activating the fluidization of emulsion droplets in pressure-driven flow through microfluidic channels. We realize the micro wedges by maskless photolithography to texture one wall of the channel and measure the velocity profiles for flow directed accordingly and against the increasing ramp of the wedge-shaped grooves. We report the enhancement of the emulsion flow in the direction of the climbing ramp of the wedge activated by increasing the magnitude of the pressure gradient. A gain for the volumetric flow rate is registered with respect to the opposite direction as being to 30% , depending on the pressure drop.

Directional Fluidity of Dense Emulsion Activated by Transverse Wedge-Shaped Microroughness

Guastella, Giacomo
Investigation
;
Ferraro, Davide
Methodology
;
Mistura, Giampaolo
Methodology
;
Pierno, Matteo
Writing – Original Draft Preparation
2025

Abstract

The handling and fluidization of amorphous soft solids, such as emulsions, foams, or gels, is crucial in many technological processes. This is generally achieved by applying mechanical stress that overcomes a critical threshold, known as yield stress, below which these systems behave as elastic solids. However, the interaction with the walls can facilitate the transition from solid to fluid by activating rearrangements of the fluid constituents close to the wall, resulting in increased fluidity of the system up to distances greater than the spatial scale of the rearrangements. We address the impact of wedge-shaped microroughness on activating the fluidization of emulsion droplets in pressure-driven flow through microfluidic channels. We realize the micro wedges by maskless photolithography to texture one wall of the channel and measure the velocity profiles for flow directed accordingly and against the increasing ramp of the wedge-shaped grooves. We report the enhancement of the emulsion flow in the direction of the climbing ramp of the wedge activated by increasing the magnitude of the pressure gradient. A gain for the volumetric flow rate is registered with respect to the opposite direction as being to 30% , depending on the pressure drop.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3549812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact