The accurate prediction of the aeroelastic behavior of turbomachinery for aircraft propulsion poses a difficult yet fundamental challenge, since modern aircraft engines tend to adopt increasingly slender blades to achieve a higher aerodynamic efficiency, incurring an increased aeroelastic interaction as a drawback. In the present work, we present a reduced order model for flutter prediction in axial compressors. The model exploits the aerodynamic influence coefficients technique with the adoption of a broadband frequency signal to compute the aerodynamic damping for multiple reduced frequencies using a single training simulation. The normalized aerodynamic work is computed for a single oscillation mode at three different vibration frequencies, comparing the outputs of aerodynamic input/output models trained with a chirp signal to those from single-frequency harmonic simulations. The results demonstrate the ability of the adopted model to accurately and efficiently reproduce the aerodynamic damping at multiple frequencies and arbitrary nodal diameters with a single simulation.

Multi-Frequency Aeroelastic ROM for Transonic Compressors

Casoni M.
;
Magrini A.;Benini E.
2024

Abstract

The accurate prediction of the aeroelastic behavior of turbomachinery for aircraft propulsion poses a difficult yet fundamental challenge, since modern aircraft engines tend to adopt increasingly slender blades to achieve a higher aerodynamic efficiency, incurring an increased aeroelastic interaction as a drawback. In the present work, we present a reduced order model for flutter prediction in axial compressors. The model exploits the aerodynamic influence coefficients technique with the adoption of a broadband frequency signal to compute the aerodynamic damping for multiple reduced frequencies using a single training simulation. The normalized aerodynamic work is computed for a single oscillation mode at three different vibration frequencies, comparing the outputs of aerodynamic input/output models trained with a chirp signal to those from single-frequency harmonic simulations. The results demonstrate the ability of the adopted model to accurately and efficiently reproduce the aerodynamic damping at multiple frequencies and arbitrary nodal diameters with a single simulation.
2024
File in questo prodotto:
File Dimensione Formato  
aerospace-11-01036-v2.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3543764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact