We present a quantum simulation strategy for a (1+1)-dimensional SU(2) non-Abelian lattice gauge theory with dynamical matter, a hardcore-gluon Hamiltonian Yang-Mills, tailored to a six-level trapped-ion-qudit quantum processor, as recently experimentally realized [Nat. Phys. 18, 1053 (2022)]. We employ a qudit encoding fulfilling gauge invariance, an SU(2) Gauss's law. We discuss the experimental feasibility of generalized Mølmer-Sørensen gates used to efficiently simulate the dynamics. We illustrate how a shallow circuit with these resources is sufficient to implement scalable digital quantum simulation of the model. We also numerically show that this model, albeit simple, can dynamically manifest physically relevant properties specific to non-Abelian field theories, such as baryon excitations.

Digital Quantum Simulation of a (1+1)D SU(2) Lattice Gauge Theory with Ion Qudits

Montangero, Simone;Silvi, Pietro
2024

Abstract

We present a quantum simulation strategy for a (1+1)-dimensional SU(2) non-Abelian lattice gauge theory with dynamical matter, a hardcore-gluon Hamiltonian Yang-Mills, tailored to a six-level trapped-ion-qudit quantum processor, as recently experimentally realized [Nat. Phys. 18, 1053 (2022)]. We employ a qudit encoding fulfilling gauge invariance, an SU(2) Gauss's law. We discuss the experimental feasibility of generalized Mølmer-Sørensen gates used to efficiently simulate the dynamics. We illustrate how a shallow circuit with these resources is sufficient to implement scalable digital quantum simulation of the model. We also numerically show that this model, albeit simple, can dynamically manifest physically relevant properties specific to non-Abelian field theories, such as baryon excitations.
2024
File in questo prodotto:
File Dimensione Formato  
PRXQuantum.5.040309.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3540711
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact