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We present a quantum simulation strategy for a (1+1)-dimensional SU(2) non-Abelian lattice gauge
theory with dynamical matter, a hardcore-gluon Hamiltonian Yang-Mills, tailored to a six-level trapped-
ion-qudit quantum processor, as recently experimentally realized [Nat. Phys. 18, 1053 (2022)]. We employ
a qudit encoding fulfilling gauge invariance, an SU(2) Gauss’s law. We discuss the experimental feasibility
of generalized Mølmer-Sørensen gates used to efficiently simulate the dynamics. We illustrate how a
shallow circuit with these resources is sufficient to implement scalable digital quantum simulation of the
model. We also numerically show that this model, albeit simple, can dynamically manifest physically
relevant properties specific to non-Abelian field theories, such as baryon excitations.
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I. INTRODUCTION

Gauge theories are a fundamental theoretical framework
in physics, playing an important role in many active areas
of research spanning from high energies [1] to condensed
matter [2] and quantum information science [3]. Their for-
mulation on a lattice, known as lattice gauge theories,
(LGTs) [4–6], is particularly suited to study nonperturba-
tive effects. Monte Carlo techniques have been extremely
successful over the years [7] in tackling various models,
including quantum chromodynamics, but they are lim-
ited by the sign problem to certain physical regimes and
struggle to capture the real-time evolution outside equi-
librium [8]. In recent years, following the advances in
quantum and quantum-inspired computation, alternative
new possibilities to face these problems have emerged,
based either on tensor-network numerical techniques
[9–11] or on analog and digital quantum simulation
[12–15], involving different experimental platforms such
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as cold atoms [16–24], superconducting circuits
[25–28] and trapped ions [29–33]. While with the numer-
ical approach both Abelian [34–46] and non-Abelian
[47–52] lattice-gauge-theory models have been theoreti-
cally studied, early demonstrations of quantum simulation
of LGT largely focused on Abelian theories [30,32,53–
58]. First attempts to tackle non-Abelian models have been
proposed, relying ether on hybrid quantum computation
schemes such as variational eigensolvers [27], while other
quantum simulation encoding proposals are fairly limited
in system size for realistic experimental platforms based
on qubits [59–64].

One potential avenue to perform large-scale quantum
computation relies on qudit-based quantum processors,
which have been proposed in several platforms, such as
Rydberg arrays [65,66], photonic circuits [67], and ultra-
cold atomic mixtures [68]. An experimental breakthrough
in this direction has been the demonstration of a uni-
versal seven-level optical-qudit quantum processor imple-
mented on a chain of trapped 40Ca+ ions [69]. Using
other ion species, the qudit dimension can be further
extended as suggested by recent results with up to 13
levels [70]. These hardware developments have already
stimulated interesting proposals [71–73] and experiments
[74,75] for performing simulations of lattice gauge the-
ories exploring this enlarged Hilbert space. However, a
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proof-of-principle experimental demonstration of a scal-
able quantum simulation of the dynamics of non-Abelian
LGTs is still lacking. Such demand is of fundamental
importance not only to build new intuitions on not fully
understood mechanisms of high-energy physics [1] but
also to explore phenomena in condensed-matter models
exhibiting non-Abelian topological order [76,77].

Here, we present a compact exotic fermion subor-
bital (rishon) representation for a truncated Yang-Mills
SU(2) (1+1)-dimensional [(1+1)D] lattice gauge theory
reduced to a six-dimensional local Hilbert space, embed-
ding the gauge and fermionic degrees of freedom. This
representation allows us to preserve the non-Abelian
gauge symmetry, remove the fermionic character of matter
(defermionization), and maintain the range of the gauge-
matter interaction to nearest neighbors. This is in contrast
with other approaches that rely either on the elimination
of the gauge [31] or the matter [73] degree of freedom,
which are not straightforwardly extendable to treat non-
Abelian models, or on a fermionic qudit quantum pro-
cessor [72,78] the proposal for which is currently limited
to programmable Rydberg-array platforms. In this work,
we present an experimentally feasible proposal based on a
currently available 40Ca+ trapped-ion-qudit quantum pro-
cessor [69,74]. In particular, we demonstrate how a digital
quantum simulation of the model can be efficiently imple-
mented by making use of generalized Mølmer-Sørensen
(MS) gates realized by simultaneous driving of multi-
ple transitions [79]. In this manner, we obtain a shal-
low circuit for each time step, enabling a feasible digital
quantum simulation on current devices capable of dis-
tinguishing between bare-meson and -baryon production
and thus signaling the non-Abelian nature of the model.
Finally, we discuss the major challenges for the experimen-
tal realization of the proposal but we demonstrate that its
implementation is compatible with current technologies.

This paper is structured as follows. In Sec. II, we intro-
duce the (1+1)D SU(2) Yang-Mills lattice gauge model and
derive the truncated qudit Hamiltonian defined on a local
six-dimensional Hilbert space. In Sec. III, we present the
strategy used to encode the model on a trapped-ion-qudit
quantum processor and the generalized MS gates used in
the quantum digital simulation. In Sec. IV, we show a
few paradigmatic examples of the non-Abelian dynamics
inherent in the model. In Sec. V, we present the strategy
used to perform a quantum digital simulation of the model
dynamics. In Sec. VI, we discuss the experimental feasi-
bility of the proposal. Finally, in Sec. VII, we summarize
our results and discuss future directions of research.

II. SU(2) LATTICE YANG-MILLS

We start by considering a Hamiltonian Yang-Mills lat-
tice gauge model, with SU(2) color symmetry, in one
spatial dimension, focusing on the low-energy regime. The
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FIG. 1. A sketch of the model. (a) A (1+1)-dimensional
[(1+1)D] Yang-Mills SU(2) lattice gauge model is encoded in
a linear chain of trapped-ion qudits. The lattice gauge links (blue
ovals) connecting the matter sites (red circles) are truncated to a
five-dimensional Hilbert space. The mapping is then performed
by exploiting the local dressed basis given in Eq. (5), obtained
through the decomposition of the gauge links into a pair of ris-
hons. (b) A pictorial representation of the local dressed basis
given in Eq. (5). The red and green circles in the links repre-
sent the two colored rishons, while the ones in the sites represent
the two colored matter fermions.

model illustrates a (flavorless) fermionic matter field cou-
pled to an SU(2) gauge field, as depicted in Fig. 1(a).
The matter field, representing quarks of bare mass m0, is
described by staggered fermions ψ̂na [80], with two col-
ors a ∈ {r, g} (say, red and green), living on the lattice
sites n and satisfying standard Dirac anticommutation rules
{ψ̂na, ψ̂†

n′b} = δn,n′δa,b. Conversely, the non-Abelian gauge
field lives on the lattice bonds between sites n and n + 1.
Following the Kogut-Susskind formulation of gauge fields
on a lattice [5], the system Hamiltonian reads

Ĥ 0 = c�
2a0

∑

n

∑

a,b=r,g

[
−iψ̂†

naÛab
n,n+1ψ̂n+1b + H.c.

]

+ m0c2
∑

na

(−1)nψ̂†
naψ̂na + g2

0
c�
2a0

∑

n

Ê2
n,n+1, (1)

where a0 is the lattice spacing, � is the Planck constant,
and c is the relativistic speed of free massless particles. The
first two terms of Eq. (1) describe the lattice Hamiltonian
of the covariant Dirac equation for massive quarks. It uses
the staggered-mass term to create two sublattices, each
representing a component of the two-spinor Dirac field,
avoiding the doubling problem [80]. In this sense, quarks
are staggered fermions on even sites, while antiquarks are
staggered-fermion holes on odd sites.
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The last term is the pure gauge Hamiltonian, which con-
tains only an electric component Ê2

n,n+1, since there are no
magnetic fields in one spatial dimension. The dimension-
less coupling g2

0 depends on the quark color charge qc and
on the lattice spacing a0: in one spatial dimension, it scales
as g2

0 = (q2
ca2

0)/(c�εc), where εc is the vacuum color per-
mittivity, assuming that the theory is super-renormalizable.
The SU(2) electric field energy density is captured by
the (dimensionless) quadratic Casimir operator Ê2

n,n+1 =
|L̂n,n+1|2 = |R̂n,n+1|2, where the algebra operators L̂(ν)n,n+1

and R̂(ν)n,n+1, with coordinates ν ∈ {x, y, z} are, respectively,
the left and right group generators of the gauge transfor-
mation on each link. The gauge-field algebra is defined by
the commutation rules

[
L̂(ν)n,n+1, R̂(ν

′)
n′,n′+1

]
= 0,

[
L̂(ν)n,n+1, L̂(ν

′)
n′,n′+1

]
= iδnn′ενν

′ν′′ L̂(ν
′′)

n,n+1,
[
R̂(ν)n,n+1, R̂(ν

′)
n′,n′+1

]
= iδnn′ενν

′ν′′ R̂(ν
′′)

n,n+1,

[
L̂(ν)n,n+1, Ûab

n′,n′+1

]
= −δnn′

∑

c

σ (ν)ac

2
Ûcb

n,n+1,

[
R̂(ν)n,n+1, Ûab

n′,n′+1

]
= δnn′

∑

c

Ûac
n,n+1

σ
(ν)

cb

2
,

(2)

where ενν
′ν′′ is the Levi-Civita symbol for SU(2) and σ (ν)

are the Pauli matrices.
To represent these operators in a matrix form, it is use-

ful to express them in the chromoelectric basis of states
| jmLmR〉, where j ∈ N/2 labels the spin-irreducible repre-
sentations (irreps), mR ∈ {−j , .., j } labels a spin shell j, and
mL ∈ {−j , .., j } labels a state within the spin shell adjoint
to j . The gauge-field algebra operators in this basis [81],

〈 j ′m′
Lm′

R|Ê2| jmLmR〉 = j ( j + 1)δj ,j ′δmL,m′
L
δmR,m′

R
,

〈 j ′m′
Lm′

R|Ûab| jmLmR〉 =
(

C j ,mL
j ′,m′

L; 1
2 ,a

)∗
C

j ′,m′
R

j ,mR; 1
2 ,b

,
(3)

where C J ,M
j1,m1;j2,m2

= 〈 j1, m1; j2, m2|J , M 〉, are the Clebsch-
Gordan coefficients, i.e., the fusion rules, for SU(2).

The model given in Eq. (1) is designed to be sym-
metry invariant under the gauge transformations gen-
erated by Ĝn =

(
R̂n−1,n + Ŝn + L̂n,n+1

)
, where Ŝ(ν)n =

1
2

∑
a,b σ

(ν)

ab ψ̂
†
naψ̂nb generates the color rotations for the

quarks. Under this observation, the non-Abelian Gauss’s
law, which defines the sector of physical states |�phys〉,
reads

∣∣∣Ĝn

∣∣∣
2
|�phys〉 = 0 ∀n (Gauss’s law), (4)

corresponding to the absence of a color background.

A. Hardcore-gluon approximation

To digitally quantum simulate the Hamiltonian in
Eq. (1), it is necessary to truncate the infinite local gauge
Hilbert space to a finite dimension. This can be done
at low energies by employing the quantum link model
(QLM) [82] formalism, where only a finite set of shells
j are considered. Basically, a cutoff is chosen for the
Ê2 energy term and the spin shells j above the cutoff
are discarded. Our proposal for digital quantum simula-
tion considers a QLM cutoff that includes the j = 0 and
j = 1

2 shells, i.e., the smallest cutoff that allows quarks
to form bound states of baryons and mesons. In prac-
tice, in our descriptions we keep all the states that are
reachable from the bare vacuum with a single applica-
tion of Ûab: in analogy to cold-atom physics, we refer to
this cutoff strategy as “hardcore gluons” and it is a rea-
sonable approximation for strong-coupling regimes [50,51,
83]. Ultimately, this picture describes a five-dimensional
gauge-field Hilbert space at each bond, spanned by the link
basis set {|00〉, |rr〉, |gg〉, |gr〉, |rg〉}. Within this representa-
tion, it is possible to decompose each gauge-field bond into
a pair of rishons. Then, the parallel transporter can be effi-
ciently decomposed as Ûab

n,n+1 = (1/
√

2)(ζ̂ a
n,n+1)L(ζ̂

b†
n,n+1)R,

where each of the exotic fermions ζ̂ a lives on the left
(L) and right (R) rishon of the same link, as sketched
in the second row of Fig. 1(a). Each rishon mode is
ultimately three-dimensional, spanned by the state |0〉 =
|j = 0, m = 0〉 with even fermion parity 〈P̂〉 = +1, and
the states |r〉 = |j = 1

2 , m = + 1
2 〉, |g〉 = |j = 1

2 , m = − 1
2 〉

with odd fermion parity 〈P̂〉 = −1. In this representa-
tion, the fermion parity on a link becomes an Abelian
(gauge Z2) symmetry of the dynamics, which defines the
five-dimensional space. By contrast, the matter sites are
regular Dirac fermions, thus spanned by the site basis:
|0〉, the fermion vacuum (even fermion parity); |r〉 = ψ̂

†
r |0〉

and |g〉 = ψ̂
†
g |0〉, singly occupied states (odd parity); and,

finally, |d〉 = ψ̂
†
r ψ̂

†
g |0〉, the doubly occupied state (even).

We can now fuse together the (R)n−1,n rishon, the matter
at site n, and the (L)n,n+1 rishon into a unique dressed site.
We now enforce the non-Abelian Gauss’s law of Eq. (4),
resulting in an effective six-dimensional gauge-invariant
basis for the dressed site, defined as the tensor product of
the matter field on a lattice site and of the rishon states
on its left and right. This basis, pictorially sketched in
Fig. 1(b), contains only states with even total fermion
parity and explicitly reads

|1〉 = |0, 0, 0〉, |2〉 = |r,0,g〉−|g,0,r〉√
2

,

|3〉 = |g, r, 0〉 − |r, g, 0〉√
2

, |4〉 = |0,r,g〉−|0,g,r〉√
2

,

|5〉 = |0, d, 0〉, |6〉 = |r,d,g〉−|g,d,r〉√
2

.

(5)
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TABLE I. Four of the six matrices that define the effective model on qudits. These four are related to the covariant Dirac transport
and they are factors of a nearest-neighbor interaction Â(1)n B̂(1)n+1 + Â(2)n B̂(2)n+1.

Â(1) Â(2) B̂(1) B̂(2)
⎛

⎜⎜⎜⎜⎜⎜⎝

0
√

2
0 1
1 0 1√

2 0
√

2√
2 0

1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0
√

2i
0 i
−i 0 i

−√
2i 0

√
2i

−√
2i 0

−i 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −√
2i

0 −i√
2i 0 −√

2i
i 0 −i√

2i 0
i 0

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

0
√

2
0 1√

2 0
√

2
1 0 1√

2 0
1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

As such, the model preserves fermion parity at each
dressed site [84]. In this dressed-site basis, it is rela-
tively straightforward (see Appendix A) to rewrite the
hardcore-gluon SU(2) Yang-Mills model from Eq. (1) into
an effective Hamiltonian,

Ĥ =
∑

n

[
Â(1)n B̂(1)n+1 + Â(2)n B̂(2)n+1

]
+ m

∑

n

(−1)nM̂ n

+ g2
∑

n

Ĉn, (6)

where we set the energy scale based on the hopping
term, by rescaling Ĥ 0 → Ĥ = ((4

√
2a0)/c�)Ĥ 0, to work

in natural units, with a dimensionless Hamiltonian Ĥ and
dimensionless couplings m = ((4

√
2m0a0c)/�) and g2 =

((3
√

2)/4)g2
0 . The 6 × 6 matrix operators appearing in this

expression are reported in Tables I and II.
While the non-Abelian Gauss’s law has been already

enforced in the definition of a dressed basis, we still have to
take into account the link law, which has arisen from split-
ting a gauge field into two rishons. In the effective model,
the link law translates into an Abelian selection rule,

(
D̂(L)

n D̂(R)
n+1 − 1

)
|�phys〉 = 0 ∀n (link law). (7)

This symmetry at each link is protected by the Hamilto-
nian; thus, in principle, it would be sufficient to satisfy the
constraint on the initial state of the dynamics. However,
this symmetry may be disrupted by noise and imperfec-
tions in a digital quantum simulator [30,32]. In Sec. V B,

we discuss how to mitigate this error via a postselection
procedure.

Another important symmetry to discuss is the conserva-
tion of the total baryon number N̂b = 1

2

∑
n(M̂ n − 1). This

quantity can be controlled by appropriately constructing
the starting state of the dynamics and allows the quantum
simulator to explore areas of the phase diagram, with high
baryon density, inaccessible to Monte Carlo simulations
due to the sign problem.

III. ENCODING INTO TRAPPED-ION QUDITS

The structure of the truncated gauge-preserving Hamil-
tonian given in Eq. (6), defined on a dressed local
basis of dimension six, suggests a natural implemen-
tation on a qudit-based quantum processor. In the fol-
lowing, we focus on an implementation using trapped
40Ca+ ions, as presented in Ref. [69], but the proposed
scheme is versatile and also applicable to other qudit
quantum processors. In the trapped-ion experiment of
Ref. [69], each qudit is encoded within the electronic
ground state S1/2 and the metastable excited state D5/2,
as illustrated in Fig. 2. An external magnetic field splits
the S1/2 state into two Zeeman sublevels, mB = ±1/2,
and the excited state into six Zeeman sublevels (mB =
±5/2, ±3/2, ±1/2). This configuration yields a total of
eight accessible qudit levels connected, considering the
selection rules, by ten allowed electric-quadrupole tran-
sitions (	mB = 0, ±1, ±2). A convenient encoding of the
model given in Eq. (6) onto the levels of the ion involves
placing the states |3〉 and |4〉 within the S1/2 ground state,

TABLE II. The last two matrices that define the effective model, related to mass term (before staggerization) and the chromoelectric
energy density, respectively. The table also shows the matrices of the link fermion-parity selection rule.

M̂ Ĉ D̂(L) D̂(R)

⎛

⎜⎜⎜⎜⎜⎝

0
0

1
1

2
2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

0
2

1
1

0
2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

+1
−1

+1
−1

+1
−1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

+1
−1

−1
+1

+1
−1

⎞

⎟⎟⎟⎟⎟⎠
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FIG. 2. Model encoding into ions qudit. The six states needed
for the model given in Eq. (6) are encoded within the eight Zee-
man sublevels of the S1/2 and D5/2 states of 40Ca+ ions. By
encoding the states |3〉 and |4〉 into the S1/2 manifold, all matrix
elements can be implemented via direct transitions. The boxes
on the left show the driving scheme to implement the Â(k) and
B̂(k) matrices, k = 1, 2, while the boxes on the right show the
implementation of the α̂(k) and β̂(k) matrices. The relative Rabi
frequencies needed for each transition are indicated next to the
corresponding arrows with two different colors, red for � and
dark red for

√
2�.

while the remaining states reside in the mB = ±3/2 and
mB = ±1/2 levels of the D5/2 metastable state, as illus-
trated in Fig. 2. This choice is motivated by the observation
that all the transitions in the model are interconnected via
the two states: |3〉 and |4〉. Note that compared to other
encoding strategies [71–73], where each gauge link and
each fermion site are separately associated with a qudit,
our approach only requires N qudits to describe both gauge
and matter fields in a lattice consisting of N sites. Such a
reduction in the number of employed atoms is an impor-
tant advantage for ion-based simulators, where scalability
in the number of atoms is a standing challenge.

Let us now discuss the implementation of the different
terms composing the qudit Hamiltonian given in Eq. (6).
Generic single-qudit operations among these states can be
decomposed into at most d(d − 1)/2 two-level subspace
rotations, where d is the qudit dimension. These rotations

have the form R̂(θ ,φ) = e−i(θ/2)σ̂ s,s′
φ , where the operators

σ̂
s,s′
φ = |s〉〈s′| connect the qudit states s and s′, θ denotes the

rotation angle, and φ sets the rotation axis. Importantly, in
the model defined in Eq. (6) the mass and gauge Hamiltoni-
ans are diagonal, requiring only five elementary rotations,
which can be easily implemented with high fidelity.

The hopping part of the Hamiltonian given in Eq. (6)
is more demanding. It necessitates two-qudit operations,
which can be broken down into a sequence of entangling
gates operating on pairs of qudit levels (we omit the site

subscript n for notational simplicity):

Â(1) = σ̂ 2,3
x +

√
2σ̂ 1,4

x +
√

2σ̂ 4,5
x + σ̂ 3,6

x ,

Â(2) = −
(
σ̂ 2,3

y +
√

2σ̂ 1,4
y +

√
2σ̂ 4,5

y + σ̂ 3,6
y

)
,

B̂(1) = σ̂ 2,4
y +

√
2σ̂ 1,3

y +
√

2σ̂ 3,5
y + σ̂ 4,6

y ,

B̂(2) = σ̂ 2,4
x +

√
2σ̂ 1,3

x +
√

2σ̂ 3,5
x + σ̂ 4,6

x .

(8)

Note that with the chosen encoding of the model, this
decomposition involves only direct transitions between the
S1/2 and D5/2 states. From this decomposition, it becomes
evident that a single next-neighbor (n, n + 1) block of the
hopping Hamiltonian requires a total of 32 entangling
gates of the form R̂XY(ϕ) = e−iϕσ̂

s1,s2
x ⊗σ̂ s3,s4

y . These rota-
tions can be implemented using MS gates [85]. Although
this decomposition requires resources available on the cur-
rent trapped-ion-qudit quantum processor [69], the consid-
erable gate count imposes limitations on the performance
of a quantum simulation of the model. In the following, we
will explore how this scheme can be enhanced by using
native qudit gates based on the simultaneous driving of
multiple transitions.

A. Native two-qudit gates

The two hopping blocks, denoted as Â(k)n B̂(k)n+1 with k =
1, 2, can be directly implemented through a generalized
MS scheme [79] that involves the simultaneous driving of
all four direct transitions in each ion, as depicted in Fig. 2.
Similar to standard MS gates, we assume that each tran-
sition of interest, ωs,s′ , is driven by a pair of lasers with
frequencies ω1

L and ω2
L, featuring opposite detunings, i.e.,

ω1
L = ωs,s′ + δ and ω2

L = ωs,s′ − δ. To achieve the correct
matrix elements reported in Table I, two out of the four
transitions are driven with a Rabi frequency of �, while
the other two are driven with

√
2� (see Fig. 2). Addi-

tionally, the phases φn associated with the driving of each
ion are chosen to align with the correct phase pattern. We
assume that we are working in the Lamb-Dicke regime,
η � 1, with η being the Lamb-Dicke parameter, and that
we separate the blue and red sidebands, coming from each
laser pair, via a rotating-wave approximation that is valid
in the regime in which the lasers are tuned close to the
motional sideband with frequency ν, i.e., |δ − ν| � δ. A
hopping block for two target ions n and n + 1 can then be
implemented via the generalized MS Hamiltonian

ˆ̄H (k)
ÂnB̂n+1

= �
η�

2

[
Â(k)n + B̂(k)n+1

]
[â†ei(ν−δ)t + âe−i(ν−δ)t],

(9)

where â (â†) is the phonon annihilation (creation) operator.
In the regime of weak driving, η� � |ν − δ|, the phononic
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bath dispersively mediates interactions among the two ions
according to the effective Hamiltonian

ˆ̄H (k)
ÂnB̂n+1

� �
(η�)2

4(ν − δ)

[
Â(k)n + B̂(k)n+1

]2
, (10)

where, in order to minimize the population of the motional
mode, we have assumed that we can let the system evolve
for a time dt̄ = 2π�/|ν − δ|, with � being a positive inte-
ger [79,85]. To perform the dynamics in natural units,
as in Eq. (6), we rescale this time by the rate associ-
ated with the MS gate, i.e., dt̄ → dt = π(η�/|ν − δ|)2.
The Hamiltonian given in Eq. (10), once rescaled, exactly
reproduces the desired hopping block up to unwanted
single-qudit rotations coming from the terms (Â(k)n )

2 and
(B̂(k)n+1)

2. Upon aggregating contributions from all transi-
tions, these rotations simplify to straightforward diagonal
matrices. These terms can then be combined with the
mass and gauge Hamiltonians of Eq. (6), resulting in the
following single-qudit Hamiltonian:

Ĥ n = m(−1)nM̂ n + g2Ĉn − Ĥ A2

n − Ĥ B2

n , (11)

where the diagonal terms in natural units read

Ĥ A2

n = diag(2, 1, 2, 4, 2, 1),

Ĥ B2

n = diag(2, 1, 4, 2, 2, 1).
(12)

Note that for n = 1, besides the gauge and mass terms,
only Ĥ A2

n contributes to the Hamiltonian in Eq. (11), while
for n = N only the Ĥ B2

n term contributes. The Hamiltonian
terms given in Eqs. (10) and (11) constitute the fundamen-
tal building blocks of the digital quantum simulation to
be discussed in Sec. V. Importantly, with this procedure
involving generalized MS gates based on the simultaneous
driving of four transitions, only two entangling operations
(one per each hopping block) are necessary to implement
the hopping between two neighboring sites.

B. Intermediate scheme

The native qudit-gate scheme outlined in Sec. III A
offers the advantage of achieving an exceptionally short
circuit depth. Nevertheless, the implementation of this
method presents technical challenges, primarily stemming
from the requirement for fine-tuned calibration of all
driven transitions (see Sec. VI). Fortunately, this demand
can be avoided by an intermediate scheme relying on the
simultaneous driving of only two distinct disjoint transi-
tions. The core idea involves decomposing the interac-
tion matrices as Â(k) = α̂

(k)
1 + α̂

(k)
2 and B̂(k) = β̂

(k)
1 + β̂

(k)
2 ,

where k = 1, 2 and

α̂
(1)
1 = σ̂ 2,3

x + √
2σ̂ 1,4

x , α̂
(2)
1 = −

(
σ̂ 2,3

y + √
2σ̂ 1,4

y

)
,

α̂
(1)
2 = σ̂ 3,6

x + √
2σ̂ 4,5

x , α̂
(2)
2 = −

(
σ̂ 3,6

y + √
2σ̂ 4,5

y

)
,

β̂
(1)
1 = σ̂ 4,6

y + √
2σ̂ 1,3

y , β̂
(2)
1 = σ̂ 4,6

x + √
2σ̂ 1,3

x ,

β̂
(1)
2 = σ̂ 2,4

y + √
2σ̂ 3,5

y , β̂
(2)
2 = σ̂ 2,4

x + √
2σ̂ 3,5

x ,
(13)

is one of the possible decompositions involving only dis-
joint transitions. The following discussion still holds for
other possible decomposition choices. With this scheme,
in contrast to the earlier approach involving only two
entangling gates, a total of eight operations are required
to reproduce the hopping between two neighboring sites.
The different contributions can be once again implemented
by simultaneously driving the two target transitions with
a pair of bichromatic pulses characterized by Rabi fre-
quencies (�,

√
2�), as illustrated in Fig. 2. Assuming the

validity of the same assumptions as employed in Sec. III A,
we derive the effective Hamiltonian

ˆ̄H (k)
α̂q,nβ̂q′ ,n+1

� �
(η�)2

4(ν − δ)

[
α̂(k)q,n + β̂

(k)
q′,n+1

]2
, (14)

where q, q′ = 1, 2 and we again set the time step to dt̄ =
2π�/|ν − δ|. As before, the phonon-mediated interaction
induces unwanted single-qudit transitions that reduce, after
rescaling in the natural units, to twice the same diago-
nal matrices of in Eq. (12), Ĥ n = m(−1)nM̂ n + g2Ĉn −
2Ĥ A2

n − 2Ĥ B2
n .

IV. MODEL PHENOMENOLOGY

In this section, we consider a few paradigmatic exam-
ples of nontrivial dynamics occurring in the model by
evolving the initial state |�(t = 0)〉 under the time-
dependent Schrödinger equation ruled by the Hamiltonian
given in Eq. (6). In particular, we identify phenomena and
observables where the non-Abelian nature of the theory
manifests itself with distinctive features and that could be
implemented in current state-of-the-art experiments.

A. Vacuum fluctuations

We first consider the phenomena of particle-density fluc-
tuations starting from an initial false vacuum [16,19,37].
Let us assume the system to be initially in the Dirac sea,
i.e., the bare vacuum represented by the ground state of
the free part of the Hamiltonian given in Eq. (6) for large
positive mass and coupling, which consists in alternat-
ing empty and doubly occupied quark and antiquark sites,
|�(t = 0)〉 = |5〉|1〉 . . . |5〉|1〉. When the hopping turns on,
this state no longer represents the real ground state and
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it undergoes a nontrivial dynamical evolution: depend-
ing on the Hamiltonian parameters, spontaneous produc-
tion of quark-antiquark pairs out of the vacuum takes
place. This effect can be quantified by the lattice particle-
density counting for the total number of created quark and
antiquark excitations,

ρ(t) = ρs(t)+ ρd(t), (15)

where the ρe(t) = 1/(2N )
∑

n pe(n, t) represent, respec-
tively, the single- (e = s) and double- (e = d) particle-
occupancy densities computed from the probability distri-
butions:

ps(n, t) = |〈�(t)|3〉n|2 + |〈�(t)|4〉n|2, (16)

and

pd(n, t) = 2

{
|〈�(t)|5〉n|2 + |〈�(t)|6〉n|2, if n ∈ even,
|〈�(t)|1〉n|2 + |〈�(t)|2〉n|2, if n ∈ odd.

(17)

In Fig. 3(a)(i), we simulate the evolution of the particle
density for different mass-coupling ratios starting from the
Dirac sea. For small masses, m � 1, particle production

is energetically favorable and after a transient the system
reaches a steady state with approximately one particle per
lattice site. For large masses, m 
 1, instead, the particle
production is more expensive and recombination effects let
the system oscillate between the Dirac and the true vac-
uum. To probe the non-Abelian nature of the model, we
compute separately the contributions to the particle density
coming from the single- and double-particle-occupancy
densities. In turn, these quantities encode the popula-
tion of bare excitations such as color-singlet pairs formed
by a quark and an antiquark occupying two neighboring
sites with an excited shared gauge link (bare meson) and
quark-quark (bare-baryon) or antiquark-antiquark (bare-
antibaryon) pairs occupying the same site. Note that the
baryon population is absent in Abelian models where just
one particle can be hosted in each lattice site. To quan-
tify the different weights of the two contributions to the
total particle density, we plot in Fig. 3(a)(ii) the difference
between the double- and single-particle-occupation densi-
ties as a function of time for the same mass-coupling ratios
as in Fig. 3(a)(i). The figure shows how single-particle
occupation is dominant in the weak-coupling regime, g2 �
1, m, while in the strong-coupling regime, g2 
 1, m, the
production of bare baryons is more energetically favor-
able. Such baryon production has no analogues in Abelian

(a) (b) (c)

(i) (i) (i)

(ii)

(ii)

(iii)

(ii)

–1.0

–0.5

0.0

0.5

1.0

–0.02

–0.01

0.00

0.01

0.02

,
,

,

,
,

,

FIG. 3. Model phenomenology. (a) Vacuum fluctuations: (i) the particle density and (ii) the difference between the double- and
single-particle-occupancy densities as a function of time, for different mass-coupling values as indicated in the figure. (b) Bare-baryon
diffusion. (i) The double-occupancy probability distribution as a function of time, capturing the evolution of two bare baryons ini-
tially excited at positions n = 6 and n = 14 with g2 = m = 0.5. To better resolve the dynamics, we have subtracted the probability
distribution associated with the evolution of the vacuum state. (ii) The interference pattern of the process described in (i), obtained by
subtracting the individual diffusion of each baryon. (c) String dynamics. The (i) single- and (ii) double-occupancy probability distribu-
tions as a function of time, for a quark-antiquark string initially excited within the sites n = 8 − 13 with g2 = m = 5. Here, we have
again subtracted the vacuum-state evolution. (iii) The electric field and single- and double-occupancy string densities as a function of
time, for the same scenario as in panels (i) and (ii). All the simulations have been carried out for a lattice of N = 20 sites, solving the
dynamics of the model given in Eq. (6), with matrix product states setting the truncation tolerance to tol = 10−7 and the maximum
bond dimension to Dmax = 200.
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theories and is a clear signature of the underlying SU(2)
nature of the model.

B. Bare-baryon diffusion

The second dynamical phenomenon under consideration
involves the diffusion of two pairs of quarks (bare baryons)
initially localized on two even sites of the lattice, with the
rest of the system being in the Dirac vacuum. In the strong-
coupling limit, where g 
 m, 1, these pairs play the role of
composite particles in the lattice, hopping from one matter
site to another, weakly exciting all other allowable con-
figurations. This regime, characterized by a fourth-order
process with a rate of Jeff = 16/g4m, occurs on a time scale
significantly longer than the natural unit (see Appendix B).
Consequently, it is not practically feasible for digital quan-
tum simulation, due to the requirement for numerous time
steps (see Sec. V).

To investigate baryon diffusion on a shorter time scale,
we examine the nonperturbative regime in which g ∼ m �
1. Specifically, we focus on the scenario in which two
bare baryons are initially excited out of the Dirac vacuum,
Ŝ51

n1
Ŝ51

n2
|GS〉, where Ŝss′

n = |s〉〈s′|n, with n1 and n2 being
even numbers. In Fig. 3(b)(i), the evolution of the double-
occupancy probability distribution, pd, is plotted, with the
vacuum fluctuation subtracted to reveal the diffusion pro-
cess. The two bare baryons disperse within a wave-front
cone with an aperture of approximately ±8t, governed by
the quark hopping rate. The interference of the two bare
baryons is depicted in Fig. 3(b)(ii) and is obtained by
subtracting the individual bare-baryon propagations.

C. String dynamics

Finally, we consider the dynamics of an initially excited
string. In this context, string breaking is a typical phe-
nomenon occurring in confined LGTs, where an initial
string excitation undergoes evolution by breaking into
pairs of particles and antiparticles. This phenomenon has
been extensively studied numerically in (1+1)D U(1) mod-
els [35,37–39] and in a (1+1)D SU(2) theory using a
different rishon representation than the one employed here
[47]. To initialize the state configuration, we apply the fol-
lowing string operator of length l to the Dirac-sea vacuum:
Ŝ = ψ̂

†
nsÛns,ns+1, . . . Ûns+l−1,ns+lψ̂ns+l, where we assume

ns to be even, corresponding to the creation of a quark,
and ns + l to be odd, corresponding to the creation of an
antiquark on that site. Expressed in the local dressed basis
of Eq. (5), this string reads

Ŝ = Ŝ41
ns

Ŝ65
ns+1Ŝ21

ns+2 · · · Ŝ65
ns+l−2Ŝ21

ns+l−1Ŝ35
ns+l. (18)

Here, we again focus on distinctive non-Abelian fea-
tures by distinguishing between bare-meson and -baryon
resonant production from the string. To observe resonant
production of bare baryons and mesons, we consider the

case in which the initial string of energy Estr = 2m + 2lg2

resonates with the energy of l + 1 baryons, each hav-
ing energy Ebar = 2m, and (l + 1)/2 mesons, each having
energy Emes = 2m + 2g2. This resonance condition is ful-
filled for both processes when g2 = m. We then let the
system evolve in time with fixed mass and coupling set to
large values to ensure that most of the energy remains con-
fined within the string, preventing quick dispersion toward
the system edges. In Fig. 3(c), we indeed observe resonant
excitations in time of the single- and double-occupancy
probability distributions within the string, signaling the
creation of the string of bare baryons and mesons. These
resonant oscillations are better resolved in Fig. 3(c)(iii),
where we plot the single- (e = s) and double- (e = d)
occupancy densities averaged within the string, ρ̃e(t) =
1/(2(l + 1))

∑ns+l
n=ns

pe(n, t), along with the electric field
string density, defined as

ρ̃E = 1
2l

ns+l−1∑

n=ns

|〈�(t)|2〉n|2 + |〈�(t)|4〉n|2 + |〈�(t)|6〉n|2

+ |〈�(t)|2〉n+1|2 + |〈�(t)|3〉n+1|2 + |〈�(t)|6〉n+1|2,
(19)

which accounts for the number of rishons on each link.

V. DIGITAL QUANTUM SIMULATION

In this section, we explore how the dynamics previously
described can be simulated digitally using a trapped-ion-
qudit quantum processor. To digitally simulate the dynam-
ics, we use the first-order Suzuki-Trotter decomposition

Û(tf) = e−iĤ tf �
⎛

⎝
∏

j

e−iĥj dt

⎞

⎠
nST

, (20)

where dt = tf/nST denotes the time step ruling the preci-
sion of the Suzuki-Trotter evolution, nST is the number of
Suzuki-Trotter steps, and tf is the final time of the evo-
lution. The terms hj represent the Hamiltonian building
blocks composing the Hamiltonian given in Eq. (6), which
we have presented in Sec. III. The evolution of the model
is then obtained by executing, for each time step, the unit-
cell circuit (in parallel across the lattice), depicted in Fig. 4
for both schemes presented in Sec. III. The unit-cell cir-
cuit involves three lattice sites and is composed of the
generalized MS gates, implementing the hopping part of
the model, followed by a single-qudit rotation on each ion
encompassing the gauge and mass terms of the Hamilto-
nian given in Eq. (11) and the correcting rotations. Con-
sidering that single-qudit rotations can be performed with
high fidelity, we define the circuit depth of the model, D,
as the number of generalized MS gates per unit-cell circuit.
Then, the total number of two-qudit gates, Ngates, required
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to perform the entire simulation on a chain of N sites scales
linearly with the system size and the Trotter steps:

Ngates = (N − 1)
2

nSTD, (21)

where D = 4 and D = 16, respectively, for the first and
second schemes presented in Sec. III. Note that the total
gate count of our proposal for both schemes is drastically
reduced with respect to a computation based on a decom-
position into two-level entangling gates (see Sec. III),
which has D = 64.

For a realistic numerical simulation of the model, we
consider small lattice sizes, specifically N = 3 and N = 4.
These sizes are chosen as they retain the essential charac-
teristics of the SU(2) dynamics under consideration while
being accessible with a short circuit implementation. The
generalized MS gates are simulated explicitly including
the vibrational degree of freedom using the Hamiltonian
in Eq. (9) and its analogue for the intermediate scheme.

A. Reproducing the system dynamics

To assess the performance of the proposed quantum
digital simulation, we compare the results of the exact
expected dynamics with those derived from the digital
scheme. We apply this comparison to the same illustra-
tive examples of dynamics discussed in Sec. IV. As a
first example, we consider in Fig. 4 the particle-density
evolution of the Dirac vacuum on N = 3 lattice sites for
the two schemes outlined in Sec. III. To perform a com-
parison with the exact evolution, we also compute the
state fidelity, F(t) = 〈�(t)|�̂q(t)|�(t)〉, where �̂q(t) rep-
resents the reduced density operator of the qudit system
after tracing over the phononic degrees of freedom and

|�(t)〉 is the state evolved under the Schrödinger equation.
The performance of the two schemes is comparable, with
the precision of the simulation ruled by the Suzuki-Trotter
step dt. Importantly, even for large time steps, dt = 0.04π ,
the initial density peak, arising from particle production
and characterizing the response time of the system, can be
accurately approximated with just nST = 3 Suzuki-Trotter
steps. Higher simulation precision can be reached by per-
forming a second-order Suzuki-Trotter decomposition, as
presented in Appendix C and discussed in Sec. VI.

Despite the limited lattice size, the digital simulation
effectively captures distinct production rates for paired
(doubly occupied sites) and unpaired (singly occupied
sites) particles. This is exemplified in Fig. 5(a), where
we observe a phenomenology that is similar to the one
depicted in Fig. 3(a) for the disparity between double- and
single-particle occupation densities. In addition to particle
production from the vacuum, the digital simulation, when
confined to a few lattice sites, successfully replicates the
other two phenomena discussed in Sec. IV: bare-baryon
diffusion and string dynamics. The former is illustrated
in Fig. 5(b), where we consider the hopping of a bare
antibaryon excited on the first site toward the third site.
This process is quantified by observing the double-particle-
occupancy probability on the first lattice site, involving
an intermediate single-particle population on the second
site. To enhance the resolution of this effect, we have
subtracted the Dirac vacuum evolution from the simula-
tion, consistent with the approach taken in Sec. IV. The
final phenomenon under consideration is string breaking.
For this scenario, we extend our analysis to a slightly
larger system size, specifically N = 4. Proceeding as in
Fig. 3(c)(iii), we calculate the electric field, as well as
the densities of the single- and double-occupancy strings,

(b)(a)

FIG. 4. Digital quantum simulation. (a),(b) Left panels: the circuit decomposition for the two strategies outlined in the text, (a)
the full and (b) the intermediate scheme. In both, D indicates the circuit depth. Right panels: the dynamics of the particle density
evolving from the Dirac vacuum for N = 3 lattice sites obtained through the model given in Eq. (6) (continuous lines) and via a first-
order Suzuki-Trotter evolution of the illustrated circuits. In the latter, we have explicitly included the phononic mode as in Eq. (9),
truncating at the eighth level. The corresponding fidelity between the exact and the digitally simulated state is also shown. The time
steps used for the Suzuki-Trotter evolution are indicated in the figures. In all the simulations, we set m = g2.
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(a) (b) (c)

FIG. 5. Reproducing the model phenomenology. (a) The difference between the double- and single-particle-occupancy densities as
a function of time for a lattice with N = 3 sites, considering various mass-coupling values as depicted in the figure. (b) The bare-
baryon diffusion, analyzed for a lattice with N = 3 sites and g2 = m = 0.5. The probabilities of double occupancy for the first and
third atoms, denoted as pd(1, t) and pd(3, t), along with the single-occupancy probability for the second atom, denoted as ps(2, t), are
studied over time. The initial condition involves a bare antibaryon excited in the first site. (c) The electric field, as well as the single-
and double-occupancy string densities, plotted over time for a lattice comprising N = 4 sites with g2 = m = 5. The string is initially
excited within the sites n = 1–4. In all plots, the continuous lines represent the exact evolution of the model given in Eq. (6), while
the discrete points correspond to the first-order Suzuki-Trotter evolution, with time step dt = 0.01π , performed using Eq. (9), which
includes eight levels of the phononic mode.

for a string initially spanning the entire lattice. As in
Fig. 3(c)(iii), we set the string energy to be in resonance
with bare-meson and -baryon production. This tuning leads
to pronounced oscillations in the quark and electric field
densities, serving as indicators of the resonant excitations
of bare mesons and baryons.

B. Link-parity preservation and postselection

As discussed in Sec. II, the employed rishon representa-
tion introduces an extra Z2 symmetry, which we set to an
even number of rishons per link. While this symmetry is
maintained throughout the Hamiltonian evolution, it may
be compromised in actual simulations due to experimental
errors leading to leakage from this subspace. These errors
can be compensated in postselection by rejecting states that
violate the symmetry, leading to a potentially significant
reduction in simulation errors.

To select which data to retain, we make use of the parity
matrices D̂(L) and D̂(R) defined in Table II, which ensures
the link fermion-parity selection rule. When applied jointly
to two neighboring sites, these operators yield a pos-
itive outcome if the link maintains the correct rishon
parity and a negative outcome if the link deviates from
the correct parity sector. Specifically, D̂(L)

n D̂(R)
n+1|�phys〉 =

|�phys〉 and D̂(L)
n D̂(R)

n+1|�unphys〉 = −|�unphys〉, where |�phys〉
and |�unphys〉 represent the physical and unphysical states,
respectively. These operators establish a truth table that
facilitates the postselection of measurements conforming
to the rishon parity.

We propose two different schemes for postselecting the
data, based respectively on destructive and nondestructive
measurements. The first exploits the truth table established
by the parity operators to determine which states to retain

at the end of the simulation. This selection relies solely on
the analysis of the qudit populations at each site, rejecting
configurations involving adjacent unphysical states—those
with just a single rishon on the link. However, it is impor-
tant to note that this procedure does not entirely eliminate
the possibility that, in previous time steps, the system may
have exited the correct parity sector and returned to it
afterward. Nevertheless, it serves as a filter and, since it
only requires the qudit populations for each time step dur-
ing the readout, it does not incur additional computational
costs. The second protocol exploits an ancilla qubit to con-
duct state-preserving measurements. This approach offers
the advantage of continuously monitoring the rishon parity
during the time evolution but demands higher resources.
The details of this scheme are discussed in Appendix D.

Another quantity that can be exploited to filter the data
in postselection is the total baryon number N̂b, as defined in
Sec. II A. This quantity is conserved by the dynamical evo-
lution of the Hamiltonian given in Eq. (6). Any population
configuration signaling deviations of this quantity from the
initial setting of the simulation indicates the occurrence of
an error in the evolution and the corresponding data should
be rejected. Also, for this quantity, it is possible to design
a nondestructive-measurement scheme to monitor possi-
ble deviations during the simulation. Unlike the link-parity
protocol, this approach requires the utilization of an ancilla
qutrit instead of a qubit (see Appendix D).

VI. EXPERIMENTAL CONSIDERATIONS

In this section, we explore the experimental challenges
associated with realizing a quantum digital simulation.
Several sources of error can impact the accuracy and effec-
tiveness of the simulation. These include deviations from
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the Lamb-Dicke regime and the rotating-wave approxi-
mation, motional heating, and magnetic field fluctuations
[79,86,87]. Another significant hurdle is the implemen-
tation of the generalized MS gates via simultaneously
driving multiple transitions. Achieving the correct target
operation requires the precise calibration of many (linear
in the number of transitions) coupled control parameters.
Most notably, optical Stark shifts are induced by each laser
tone [88,89], which creates an additional layer of complex-
ity. In the following, we discuss some of these experimen-
tal challenges, which must be overcome for the successful
experimental realization of the proposed quantum digital
simulation.

A. Magnetic field fluctuations

To evaluate the impact of external magnetic field fluc-
tuations, we have assumed infinitely correlated noise in
time and space: throughout each single realization of the
dynamics, the magnetic field Bz perceived by the ion
qudits is constant and uniform. Therefore, the produced
Zeeman shifts correspond to Ĥ Z0 = −Bz ∑

n m̂z
n with the

magnetic dipole operator

m̂z = 1
2

⎛

⎜⎜⎜⎜⎜⎝

−3μD
−μD

−μS
μS

μD
3μD

⎞

⎟⎟⎟⎟⎟⎠
,

(22)

where we consider a ratio w = μD/μS ≈ 0.6 between the
magnetic moments of the D5/2 and the S1/2 spin orbitals,
compatible with Ref. [69]. Once we express this Hamil-
tonian shift in natural units, just as we did for the model
Hamiltonian in Eq. (6), we can similarly identify a mag-
netic field realization via the dimensionless parameter
b = ((2

√
2a0μs)/c�)Bz. Then, the rescaled (dimension-

less) Hamiltonian Ĥ Z = ((4
√

2a0)/c�)Ĥ Z0 simply reads
Ĥ Z = −b

∑
n F̂n, with

F̂n = diag(−3w, −w, −1, 1, w, 3w), (23)

and we have incorporated the magnetic fluctuations Hamil-
tonian into the Suzuki-Trotter evolution of the Dirac vac-
uum depicted in Fig. 4(a). We have averaged over 100
realizations of time evolution, while randomly choosing in
each realization r the (static uniform) rescaled magnetic
coupling br from a uniform (flat) distribution within the
interval br ∈ [−	b,	b]. For a comparative analysis with
the exact evolution, we have computed the state fidelity,
F(t̃), at the time t̃, corresponding to the initial peak in
the particle density observed in Fig. 4(a). This fidelity is
shown in Fig. 6(a) as a function of the strength of the mag-
netic field fluctuations,	b, for both first- and second-order
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FIG. 6. Error estimation. (a) The state infidelity calculated
with respect to the expected state at time t̃ = 0.377 and the
digitally simulated one as a function of the strength of the mag-
netic field fluctuations for the same configuration as in Fig. 4(a).
The results have been obtained using the first scheme given in
Fig. 4(a) and the continuous and dashed lines represent, respec-
tively, the results obtained with a first- (ST1) and second-order
(ST2) Suzuki-Trotter evolution. The gray lines indicate the ideal
performance obtained in the absence of a magnetic field. We
consider the same Suzuki-Trotter time steps as in Fig. 4, which
require nST = 12 and nST = 3 steps, respectively, to reach t̃. (b)
The estimation of the success probability of reaching the peak
in the particle density at t̃ = 0.377 versus the number of Suzuki-
Trotter steps and the fidelity of a single generalized MS gate. The
left and right panels are obtained, respectively, for the first- and
second-order Suzuki-Trotter evolution.

(see Appendix C) Suzuki-Trotter evolutions, considering
the same Trotter steps as in Fig. 4. The figure demonstrates
that the fidelity is not significantly impacted for magnetic
fluctuations inducing level shifts up to 10% of the particle
hopping rate, set by (η�)2/(2|ν − δ|) in the digital simula-
tion. For expected hopping rates on the order of 0.1–1 kHz,
this implies a requirement for magnetic field fluctuations
to be maintained below the nanotesla threshold. Achieving
this level of precision can be realized with current mag-
netic shielding techniques [90]. Another strategy that can
be employed to reduce magnetic field fluctuations relies
on performing a dynamical decoupling scheme [91,92].
In our case, this could be realized by applying two con-
secutive Suzuki-Trotter steps: the first with the current
encoding and the second with a locally dressed basis (see
Appendix E) rotated to acquire an opposite magnetic shift.
Other schemes to perform dynamical decoupling of qudits,
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albeit in different ion species, have recently been pro-
posed [60,93]. Nevertheless, the main limitations for our
proposal currently rely on intrinsic gate errors and pulse
calibration, which we address in Sec. VI B.

B. Impact of other errors in the simulation

To make an agnostic estimation of the impact of other
sources of error in the digital simulation, we assume that a
single generalized two-qudit MS gate occurs with a finite
fidelity FMS. If we neglect errors coming from single-
qudit operations, which are performed with high precision,
the overall performance of the simulation at a given time
t = nSTdt can be estimated by the success probability

P(t) = F(t)[FMS]Ngates , (24)

where the total number of gates Ngates is defined in Eq. (21).
In Fig. 6(b), we plot this success probability as a func-
tion of different values of the two-qudit gate fidelity and of
the number of Suzuki-Trotter steps necessary to reach, as
before, the peak of the particle-density creation at time t̃. In
particular, we compare the results obtained with a first- and
a second-order Suzuki-Trotter evolution, with the latter
having D = 6 circuit depth (see Appendix C). This estima-
tion shows that with a two-qudit gate fidelity of the order
of FMS � 0.99, it is possible to obtain a success probabil-
ity, P ∼ 90%, sufficient for probing the dynamics of the
model. Such two-qudit gate fidelities are achievable under
the assumption that the errors associated with each transi-
tion are independent of each other. With this assumption,
the overall error grows linearly with the number of transi-
tions with respect to the standard MS qubit gate infidelity,
which, according to the state of the art, can reach values of
the order of 0.2% [94]. However, in the actual implementa-
tion, the generalized MS gate performance will depend on
the accumulated errors coming from each driven transition,
which generically are mutually dependent. The final gate
fidelity then will rely on an optimal calibration process, as
discussed in Sec. VI C.

C. Calibration challenges

Using multiple driving fields, even a standard qubit MS
gate requires the calibration of four control parameters.
In contrast to local gates, these control parameters are
nonlinearly correlated and thus cannot be calibrated inde-
pendently. As an example, consider a bichromatic light
field, symmetrically detuned from an optical transition, as
described in Sec. III. Changing the amplitude of one of the
two laser tones nonlinearly shifts the transition frequency,
which in turn changes the effective detuning and thus the
coupling strength of the other tone. Moreover, due to the
multilevel structure of the ion, these Stark shifts are dif-
ferent for each of the optical transitions. For a qubit MS
gate, calibration typically involves four control parameters

that can be calibrated iteratively or in an automated fashion
using Bayesian techniques [95].

For generalized MS gates, as discussed in Sec. III,
the situation becomes significantly more difficult. Not
only does a change in one parameter affect the entan-
gling dynamics between the two states connected by the
addressed transition but it now also affects the dynamics
of states coupled by a simultaneously driven transi-
tion. While manual calibration of such a coupled mul-
tiparameter landscape seems very challenging, Bayesian
parameter-estimation techniques might be extendable to
this scenario, given a suitable cost function. Notably, the
second approach discussed in Sec. III mediates these chal-
lenges, since it requires simultaneous driving only on
disjoint transitions. This makes it possible to reduce the
coupling between the parameters and precalibrate the oper-
ations on the two transitions independently to a large
extent.

Finally, we observe that a further difficulty for the cal-
ibration process comes from the fact that the two-qudit
gates presented in Sec. III require us to drive two differ-
ent sets of transitions on the two ions n and n + 1. This
issue can be solved by applying a rotation of the local
dressed basis via unitary transformations, as discussed in
Appendix E.

VII. CONCLUSIONS AND OUTLOOK

In summary, we have considered a Yang-Mills SU(2)
1D lattice gauge theory with dynamically coupled mat-
ter truncated at the lowest levels exhibiting nontrivial
dynamics and non-Abelian features. We have introduced
a compact rishon representation, embedding local gauge
and fermionic degrees of freedom within a dimension-six
Hilbert space, which has a natural encoding onto a qudit
quantum processor based on 40Ca+ trapped ions. We have
presented three different schemes relying on entangling
gates based, respectively, on a single, double disjoint, and
four simultaneously driven transitions per ion. Relevantly,
for the latter, we have demonstrated that an efficient digi-
tal quantum simulation of the model can be accomplished
with a notably short circuit depth. This result is facili-
tated by harnessing the computational advantages inherent
in qudits and is based on the efficacy of generalized MS
gates. Note that, as also pointed out in other works [71–74],
just the simple encoding of the model into qudits already
brings substantial advantages with respect to qubit-based
quantum digital simulations, which usually require larger
computation resources and circuit depth and the capabil-
ity of engineering long-range and/or three-or-more-body
interactions [27,60,63,96–99].

The proposed qudit-encoding scheme, based on the
local gauge-matter dressed basis, can be generalized to
higher representations, symmetries, and dimensions. The
most straightforward extensions consist of including the
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j = 1 spin shell of the gauge field in the chromoelectric
basis, which is achieved by employing a local dressed
basis of total dimension d = 10 [50]. Similarly, an anal-
ogous (1+1)D SU(3) Yang-Mills model [truncated to the
smallest nontrivial representations (1, 0) and (0, 1) for the
gauge field], the phenomenology of which is closer to
QCD such as three-quark baryons, can be achieved with
a local dressed basis of dimension d = 12 [51]. Consid-
ering higher spatial dimensions, the non-Abelian rishon
representation can be applied to describe a j = 1/2 trun-
cated (2+1)D SU(2) model without dynamical matter (pure
theory), with a local dressed basis of dimension d = 9
[50]. The major challenge in this case would come from
the four-body plaquette term associated with the magnetic
field. Such interaction could be decomposed into a series of
two-qudit gates, as proposed in Ref. [71], or by exploiting
four-body ion interactions [100,101]. All these extensions
are within the state-of-the-art development with ion qudits,
where full single-qudit control of 13-level trapped-ion
qudits made of 137Ba+ has recently been demonstrated
[70]. Further extensions could be envisioned by exploit-
ing qudits with larger dimensions, such as those encoded
in metastable states of ion isotopes with nuclear spin [102]
and in circular levels of Rydberg atoms [65,66]. In conclu-
sion, this proposal provides an experimentally feasible and
potentially scalable pathway for observing non-Abelian
lattice gauge phenomena, such as those from high-energy
physics or emerging in condensed-matter models, in cur-
rently available qudit quantum processors.
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APPENDIX A: RISHON REPRESENTATION

Once the hardcore-gluon approximation is adopted, the
parallel transporter Ûab reads, in the chromoelectric five-
dimensional basis of the gauge-field space [81],

Ûab = 1√
2

⎛

⎜⎜⎜⎝

0 +δarδbg −δarδbr +δagδbg −δagδbr
−δagδbr 0
−δagδbg 0
+δarδbr 0
+δarδbg 0

⎞

⎟⎟⎟⎠ .

(A1)

Here, we briefly decompose it as a pair of exotic fermion
operators, each one acting on a suborbital (rishon). First,
we need a practical strategy to define exotic fermion oper-
ators: a valid fermionic operator has a local action F̃ that
inverts a local parity P̂ = P̂† = P̂−1, so that {P̂, F̃} = 0. In
analogy to the Jordan-Wigner transformation, the global
action of the fermion operator F̂ is the string

F̂n = . . . P̂n−2 ⊗ P̂n−1 ⊗ (
F̃

)
n ⊗ 1n+1 ⊗ 1n+2 . . . , (A2)

in contrast to a boson B̂ (or spin) global action, which
instead reads

B̂n = . . .1n−2 ⊗ 1n−1 ⊗ (
B̃
)

n ⊗ 1n+1 ⊗ 1n+2 . . . . (A3)

This prescription ensures that any two fermion oper-
ators on different modes anticommute as they should:
{F̂n, F̂′ �=n} = {F̂n, ψ̂(†)

n′ �=n} = 0. In this formalism, it is
straightforward to define a Dirac fermion lattice field,

ψ̂Dirac =
(

0 1
0 0

)

F
, P̂ψ =

(+1 0
0 −1

)
, (A4)

as well as a Majorana one,

ĉMajo =
(

0 1
1 0

)

F
, P̂c =

(+1 0
0 −1

)
, (A5)

where the subscript “F” specifies that the operator is meant
to be understood as a fermion, i.e., that this global action
has a parity string attached, as in Eq. (A2).
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We can then define a pair of exotic fermion operators for
the rishon space, written in the basis {|0〉, |r〉, |g〉}, namely,

ζ̂ r =
⎛

⎝
0 1 0
0 0 0
1 0 0

⎞

⎠

F

, ζ̂ g =
⎛

⎝
0 0 1

−1 0 0
0 0 0

⎞

⎠

F

,

(A6)

with the corresponding local fermion parity

P̂ζ =
⎛

⎝
1 0 0
0 −1 0
0 0 −1

⎞

⎠ . (A7)

One can then check that the parallel transporter can be
decomposed as

Ûab
n,n+1 = 1√

2

(
ζ̂ a

n

)

L

(
ζ̂ b

n+1

)†

R
. (A8)

Performing such a decomposition greatly simplifies the
covariant hopping from the lattice Yang-Mills Hamilto-
nian, specifically,

Ĥ hop = c�
2a0

∑

n

∑

a,b=r,g

[
−iψ̂†

naÛab
n,n+1ψ̂n+1b + H.c.

]

=
√

2c�
4a0

∑

n

∑

a,b=r,g

[
−iψ̂†

na

(
ζ̂ a

n

)

L

(
ζ̂ b

n+1

)†

R

× ψ̂n+1b + H.c.
]

=
√

2c�
4a0

∑

n

[
Q̂†

LnQ̂R,n+1 + Q̂LnQ̂†
R,n+1

]
, (A9)

where the operators Q̂L,n = ∑
a=r,g

(
ζ̂ a

n

)†

L
ψ̂na and Q̂R,n =

−i
∑

a=r,g

(
ζ̂ a

n

)†

R
ψ̂na are explicitly gauge invariant and

genuinely local (preserving the fermion parity on the
dressed site). On the six-dimensional logical basis for the
dressed site, these matrices read as reported in Table III.
They are not Hermitian, however, so they still need to
be manipulated for quantum simulation with trapped ions.
Therefore, we substitute

Â(1) = Q̂L + Q̂†
L, B̂(1) = Q̂R + Q̂†

R,

Â(2) = i(Q̂L − Q̂†
L), B̂(2) = i(Q̂R − Q̂†

R),
(A10)

where we have defined four Hermitian operators. Now,
by noting that Â(1) ⊗ B̂(1) + Â(2) ⊗ B̂(2) is equal to 2Q̂†

L ⊗

TABLE III. The effective model matrices Q̂L and Q̂R written in
the gauge-invariant canonical basis of the dressed site.

Q̂L Q̂R
⎛

⎜⎜⎜⎜⎜⎜⎝

0
√

2
0 1

0 1
0

√
2

0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
−i

⎛

⎜⎜⎜⎜⎜⎜⎝

0
√

2
0 1

0
√

2
0 1

0
0

⎞

⎟⎟⎟⎟⎟⎟⎠

Q̂R + 2Q̂L ⊗ Q̂†
R, we can conclude that

Ĥ hop =
√

2c�
8a0

∑

n

[
Â(1)n B̂(1)n+1 + Â(2)n B̂(2)n+1

]
, (A11)

which is the expression for the nearest-neighbor term that
appears in the main text.

Regarding the chromoelectric energy density, we can
split the energy contribution half-half to each rishon (the
quadratic Casimir eigenvalue must be the same on the two
halves due to the link law). Basically,

Ĥ elec = g2 c�
4a0

∑

n

(
|R̂n,n+1|2 + |L̂n,n+1|2

)
(A12)

but the quadratic Casimir on the rishon space simply reads

|L̂|2\|R̂|2 =
⎛

⎝
0 0 0
0 3/4 0
0 0 3/4

⎞

⎠ = 3
4

K̂ . (A13)

Therefore, in conclusion,

Ĥ elec = g2 3c�
16a0

∑

n

(
K̂L,n + K̂R,n

)
(A14)

and the sum K̂L + K̂R on a dressed site is exactly the
operator Ĉ.

APPENDIX B: PERTURBATIVE MODEL IN THE
STRONG-COUPLING LIMIT

In the strong-coupling limit, g 
 1, the excitation of
the link becomes energetically costly and the field can be
adiabatically eliminated. The description of the model is
then reduced to the bare-matter states |1〉 and |5〉, which
we rename | ↑〉 = |5〉 and | ↓〉 = |1〉. A simple hopping
process between these two states can be obtained in pertur-
bation theory and leads to the following Heisenberg model
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in a staggered magnetic field:

Ĥ Heis = − 4
ḡ2

∑

n

σ̂ n · σ̂ n+1 + m
∑

n

(−1)nσ̂ z
n , (B1)

where ḡ2 = g2 + m and σ̂ = (σ̂ x, σ̂ y , σ̂ z). Within this
model, the Dirac vacuum corresponds to the antiferromag-
netic ground state. Assuming that we initially flip a single
spin out of this vacuum, corresponding to the excitation of
a bare baryon in the original model, a second-order hop-
ping process occurs in the limit of ḡ2m 
 1. This process
gives rise to the following tight-binding Hamiltonian:

Ĥ eff = Jeff

∑

n

(
σ̂+

n σ̂
−
n+1 + σ̂−

n σ̂
+
n+1

)
, (B2)

with hopping rate Jeff = 16/ḡ4m, which describes the dif-
fusion of bare baryons at a speed vg = 2Jeff. This result has
been obtained in a two-step perturbation process. A more
precise effective description can be obtained by perform-
ing directly a fourth-order perturbation theory in the limit
g, m 
 J , considering explicitly the two hopping paths
accessible to an initially excited baryon:

|5〉|5〉|1〉 E = 0, |5〉|5〉|1〉 E = 0,
|5〉|4〉|3〉 E = 2m + 2g2, |5〉|4〉|3〉 E = 2m + 2g2,
|5〉|1〉|5〉 E = 4m, |4〉|6〉|3〉 E = 4g2,
|4〉|3〉|5〉 E = 2m + 2g2, |4〉|3〉|5〉 E = 2m + 2g2,
|1〉|5〉|5〉 E = 0, |1〉|5〉|5〉 E = 0,

(B3)

where for each state, we have indicated the bare energy
cost. Performing an adiabatic elimination at the fourth

order, we finally obtain the following effective coupling
rate:

Jeff = 16
mḡ4 + 8

g2ḡ4 , (B4)

which reduces to the one previously derived in the limit of
g 
 m.

APPENDIX C: SECOND-ORDER
SUZUKI-TROTTER DECOMPOSITION

In the main text, we have shown how employing a
second-order Suzuki-Trotter decomposition can be ben-
eficial for the simulation, even if it implies a slightly
larger circuit depth. The unit-cells circuit is presented in
Fig. 7(a). The first and last gates can be merged in one
during the evolution; thus the circuit depth is D = 6. To
ensure in this scheme a reduced population of the phonic
mode, we set dt̄ = 4π/|ν − δ| for all the applied gates.
In Fig. 7(a), we show the performance of this scheme,
again considering the particle creation out of the Dirac
vacuum and the corresponding state fidelity in time, com-
paring the results obtained with the first- and second-order
Suzuki-Trotter decompositions. The plot shows a clear
improvement of the simulation performance due to the
reduced Suzuki-Trotter error.

APPENDIX D:
NONDESTRUCTIVE-MEASUREMENT

ERROR-DETECTION PROTOCOL

1. Link symmetry

The link-parity-preservation protocol presented in the
main text to preserve the link symmetry has the

(a) (b)

1ST

1ST 2ST

2ST

FIG. 7. Second-order Suzuki-Trotter decomposition. (a) The unit-cell circuit for the second-order Suzuki-Trotter decomposition.
The first and last gates can be combined in one of duration dt, leading to a circuit depth of D = 6. (b) The particle density as function
of time for the Dirac vacuum with N = 3 lattice sites. The continuous line has been obtained with the exact model, while the dots
have been obtained via the second-order Suzuki-Trotter (ST2) evolution of the illustrated circuit, using the time steps indicated in the
figure. Below is shown the corresponding fidelity between the exact and the digitally simulated state comparing the results of the first-
(dashed line) and second-order (continuous line) Suzuki-Trotter decompositions. For the ST2, we have included the phononic mode
truncating at the eighth level.
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disadvantage of relying on destructive measurements. As
an alternative scheme, here we propose a strategy based on
state-preserving measurements. This approach offers the
advantage of continuously monitoring (and quantum Zeno
protecting) rishon parity during the evolution of the sys-
tem. The core concept involves the utilization of an ancilla
qubit per qudit pair, which may also be represented by an
unused qudit level, to conduct state-preserving measure-
ments. Focusing on two adjacent sites, denoted as n and
n + 1, let us consider a scenario in which, during the evo-
lution of the system, the state tends to leak out of the parity
sector due to experimental errors. The generic form of the
state of the two sites then reads

|ψ〉 =
∑

r

ar|ψphys〉r +
∑

r

br|ψunphys〉r, (D1)

where |ψphys〉r and |ψunphys〉r represent states living in the
even- and odd-symmetry sectors. Here, for simplicity, we
are assuming a coherent superposition between the two,
but an analogous argument works for a generic statistical
mixture. To nondestructively measure parity, we employ
a hybrid version of the controlled-exchange (CEXc) gate,
already implemented in the trapped-ion-qudit quantum
processor [69]:

CEXc =
{|s, ↑〉 ↔ |s, ↓〉, if s = c,

|s, k〉 → |s, k〉, if s �= c, (D2)

where |s, k〉 represents the product state between the qudit
and the qubit. This gate flips the state of the ancilla qubit if
the qudit is in the state |c〉 and retains the state of the qubit
if the qudit is in any other state. We initialize the ancilla in
the state | ↓〉a and apply a sequence of CEXc gates on each
qudit. The choice of the state of the |c〉 qudit corresponds
to the negative values of the two parity operators given in
Table II associated with each qudit pair, as illustrated in
Fig. 8(a). A similar sequence is then applied separately at
the first and last qudits of the chain to ensure that the parity
remains fixed at the boundaries. This process results in the
following state for two adjacent sites:

|ψ〉 =
∑

r

ar|ψphys〉r| ↓〉a +
∑

r

br|ψunphys〉r| ↑〉a. (D3)

With this procedure, we can monitor the evolution of the
state at each time step. In particular, if the ancilla qubit
remains in its initial state, we can be confident that the
evolution has occurred within the correct symmetry sector.
However, if the ancilla qubit flips, indicating a deviation,
it suggests a leakage into the odd-symmetry sector.

Note that if we neglect the possibility of having more
than one qudit error in the chain within a given time step,
this nondestructive measurement of the link-parity errors
is capable of detecting all possible single-qudit state flips

(a)

(b)

CEX

CSUM CSUM CSUM CSUM

CEX CEX CEX CEX CEX

FIG. 8. The (a) parity and (b) baryon-number check circuits to
maintain the evolution in the correct parity or baryon sector. In
the scheme presented in (a), an ancilla qubit is employed per each
pair of qudits, while in (b), the same ancilla qutrit is used for all
of the chain.

besides the ones maintaining the same link parity, i.e.,
|1〉 ↔ |5〉 and |2〉 ↔ |6〉. To also detect this kind of error,
in Sec. D 2 we propose a nondestructive scheme to monitor
deviations in the baryon number of the chain.

2. Baryon number

Let us assume, in the following, that our qudit quantum
processor is affected only by single-qudit errors in each
time step. Such errors can induce a modification of the total
baryon number N̂b = 1

2

∑
n(M̂ n − 1), which for a single-

qudit flip can vary by an half integer or by an integer, i.e.,
	N̂b = ± 1

2 , ±1. Deviation in this quantity can be moni-
tored during the evolution by using an ancilla qutrit for the
entire chain spanned by the basis set |t〉a = |0̄〉a, |1̄〉a, |2̄〉a,
with the two upper states counting for half integer and
integer deviations, respectively. In this case, we employ
the controlled-SUM (CSUMc) gate, which is available in the
trapped-ion-qudit quantum processor [69]:

CSUMc =
{|s, t〉 ↔ |s, t ⊕ 1〉, if s = c,
|s, k〉 → |s, k〉, if s �= c, (D4)

where ⊕ denotes addition modulo 3 and where |s, k〉 rep-
resents the product state between the qudit and the qutrit.
We initialize the qutrit ancilla in the state |0̄〉a and then
apply to each qudit the sequence of gates CSUM3, CSUM4,
CSUM2

5, and CSUM2
6 shown in Fig. 8(b). Here, the gates

CSUM2
c perform the operation |c, t〉 ↔ |c, t ⊕ 2〉 if the qudit

is in state c. With this scheme, if the ancilla qutrit at
the end of the process takes a value different from |0̄〉,
a single-qudit flip has occurred. Importantly, the qudit
flips not detectable from the link-parity symmetry, i.e.,

040309-16



(1+1)D SU(2) LATTICE GAUGE THEORY WITH ION QUDITS PRX QUANTUM 5, 040309 (2024)

|1〉 ↔ |5〉 and |2〉 ↔ |6〉, are signaled by a qutrit read-
out |t〉a = |2̄〉. With this procedure, combined with the
link-symmetry nondestructive measurement, all possible
single-qudit symmetry violations can be detected at each
time step.

APPENDIX E: LOCAL DRESSED BASIS
ROTATION

The two-qudit gates discussed in Sec. III require us to
drive two different set of transitions on the qudit of the two
ions. This is not a fundamental problem per se but it can
affect the complexity of the pulse-calibration process. A
solution to this issue consists in performing a unitary trans-
formation of the local dressed basis on just the even lattice
sites, using the following unitary operator:

V̂ =

⎛

⎜⎜⎜⎜⎜⎝

i
i

0 1
1 0

−i
−i

⎞

⎟⎟⎟⎟⎟⎠
. (E1)

This matrix transforms the operators of the model Eq. (6)
according to

V̂Â(k)V̂† = −B̂(k),

V̂B̂(k)V̂† = Â(k),

V̂M̂ V̂† = M̂ ,

V̂ĈV̂† = Ĉ,

(E2)

with k = 1, 2. The Hamiltonian given in Eq. (6) than reads

Ĥ =
∑

n∈odd

[
Â(1)n Â(1)n+1 + Â(2)n Â(2)n+1

]

−
∑

n∈even

[
B̂(1)n B̂(1)n+1 + B̂(2)n B̂(2)n+1

]

+ m
∑

n

(−1)nM̂ n + g2
∑

n

Ĉn. (E3)

In this way, as required, the two-qudit gates necessary to
implement the hopping terms always involve the same
operator acting on the pair of qudits. This change of local
basis should be applied before and after the sequence of
four two-qudit gates presented in Fig. 4. To conclude the
protocol, after having returned to the original basis, the
single-qudit compensation operations [see Eq. (12)] can be
applied as in the main text.

For the disjoint double-transition scheme, it is also pos-
sible to apply local transformations in order to have two-
qudit gates involving the same operator on both qudits.

Compared to the full scheme, the same basis transforma-
tion cannot be applied for all of the gates but different
single-qudit rotations should be applied on each site before
and after each two-qudit gate. In particular, it is possible to
reduce all the two-qudit gates to always be of the same
form by using the unitary transformations

V̂
α̂
(k)
q α̂

(k′)
q′
α̂(k)q V̂†

α̂
(k)
q α̂

(k′)
q′

= α̂
(k′)
q′ , (E4)

V̂
β̂
(k)
q α̂

(k′)
q′
β̂(k)q V̂†

β̂
(k)
q α̂

(k′)
q′

= α̂
(k′)
q′ , (E5)

with k, q, k′, q′ = 1, 2. Again, the single-qudit compensa-
tion matrices could be applied in a similar way how they
are applied in the main text, at the end of the series of gates,
when the local basis is transformed back to the original
one.
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