The reliable stimulation and recording of electrical activity in single cells by means of organic bio-electronics will be an important milestone in developing new low-cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single-cell membrane potential recording by means of a dual-gate electrolyte-gated organic field-effect transistors (EGOFET) employing 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET-based bio-sensors is reported, highlighting the importance of the device design and using an appropriate batch ...

Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated Organic Field‐Effect Transistor

Lago, Nicolo';Tonello, Sarah;Marino, Saralea;Casalini, Stefano;Buonomo, Marco;Pisu, Simona;Giorgi, Giada;Pedersen, Morten Gram;Bortolozzi, Mario;Cester, Andrea
2024

Abstract

The reliable stimulation and recording of electrical activity in single cells by means of organic bio-electronics will be an important milestone in developing new low-cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single-cell membrane potential recording by means of a dual-gate electrolyte-gated organic field-effect transistors (EGOFET) employing 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET-based bio-sensors is reported, highlighting the importance of the device design and using an appropriate batch ...
2024
File in questo prodotto:
File Dimensione Formato  
Adv Elect Materials - 2024 - Lago - Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3539724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact