For the efficient design and implementation of a Ground Source Heat Pump (GSHP) system, the local subsoil stands as the core element. Alongside the conventional Thermal Response Test (TRT), recent research has developed improved approaches that garner more detailed information about ground thermal properties. One such technique is the fiber optic-based distributed thermal sensing. It relies on copper wires to thermally stimulate the ground, while optical fibers collect temperature variations over time along the cable. Another pioneering technology, the enhanced GEOsniff (produced by enOware GmbH), enables high-resolution, spatially-distributed representation of subsoil thermal properties along the Borehole Heat Exchanger (BHE) via wireless data transmission. This study compares and discusses data acquired through these two innovative techniques at the new campus for the humanities of the University of Padova, situated in Northern Italy's Eastern Po river plain. The findings are further juxtaposed with conventional TRT results, in terms of thermal conductivity and borehole thermal resistance. The thermal conductivity vertical profiles are also compared with direct measurements conducted on samples. These advanced techniques show promise in aiding the optimization of borehole length design, particularly in geological settings of heightened complexity.

COMPARISON BETWEEN NEW ENHANCED THERMAL RESPONSE TEST METHODS FOR UNDERGROUND HEAT EXCHANGER SIZING

Galgaro, A.
Conceptualization
;
Da Re, R.
Data Curation
;
Carrera, A.
Data Curation
;
Di Sipio, E.
Membro del Collaboration Group
;
Dalla Santa, G.
Writing – Review & Editing
2024

Abstract

For the efficient design and implementation of a Ground Source Heat Pump (GSHP) system, the local subsoil stands as the core element. Alongside the conventional Thermal Response Test (TRT), recent research has developed improved approaches that garner more detailed information about ground thermal properties. One such technique is the fiber optic-based distributed thermal sensing. It relies on copper wires to thermally stimulate the ground, while optical fibers collect temperature variations over time along the cable. Another pioneering technology, the enhanced GEOsniff (produced by enOware GmbH), enables high-resolution, spatially-distributed representation of subsoil thermal properties along the Borehole Heat Exchanger (BHE) via wireless data transmission. This study compares and discusses data acquired through these two innovative techniques at the new campus for the humanities of the University of Padova, situated in Northern Italy's Eastern Po river plain. The findings are further juxtaposed with conventional TRT results, in terms of thermal conductivity and borehole thermal resistance. The thermal conductivity vertical profiles are also compared with direct measurements conducted on samples. These advanced techniques show promise in aiding the optimization of borehole length design, particularly in geological settings of heightened complexity.
File in questo prodotto:
File Dimensione Formato  
Galgaro_DTS_confrontoGeosniff_GETE2024.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 8.58 MB
Formato Adobe PDF
8.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3538787
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact