We prove a lower bound on the number of the convex components of a compact set with non-empty interior in Rn for all n ≥ 2. Our result generalizes and improves the inequalities previously obtained in [M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 2019, 6, Article ID 1850036] and [M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 2008/09, 71-78].

On the convex components of a set in Rn

Stefani G.
2023

Abstract

We prove a lower bound on the number of the convex components of a compact set with non-empty interior in Rn for all n ≥ 2. Our result generalizes and improves the inequalities previously obtained in [M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 2019, 6, Article ID 1850036] and [M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 2008/09, 71-78].
2023
File in questo prodotto:
File Dimensione Formato  
Giannetti, Stefani - On the convex components of a set in R^n.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3536114
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact