We prove a lower bound on the number of the convex components of a compact set with non-empty interior in Rn for all n ≥ 2. Our result generalizes and improves the inequalities previously obtained in [M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 2019, 6, Article ID 1850036] and [M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 2008/09, 71-78].
On the convex components of a set in Rn
Stefani G.
2023
Abstract
We prove a lower bound on the number of the convex components of a compact set with non-empty interior in Rn for all n ≥ 2. Our result generalizes and improves the inequalities previously obtained in [M. Carozza, F. Giannetti, F. Leonetti and A. Passarelli di Napoli, Convex components, Commun. Contemp. Math. 21 2019, 6, Article ID 1850036] and [M. La Civita and F. Leonetti, Convex components of a set and the measure of its boundary, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 2008/09, 71-78].File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Giannetti, Stefani - On the convex components of a set in R^n.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.