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1 Introduction

1.1 Convex components

Let n ≥ 2. Let us consider a compact set E ⊂ ℝn with non-empty interior and a decomposition of the form

E =
k
⋃
i=1

Ei , (1.1)

where k ∈ ℕ and E1 , . . . , Ek are the convex components of E, i.e., compact and convex sets with non-empty inte-
rior. Since, in general, such a decomposition is obviously not unique, it is interesting to give a lower bound on
the minimal number kmin(E) ∈ ℕ of the convex components of E. By definition, kmin(E) = 1 if and only if E is
a convex body. Moreover, we can note that kmin(E) ≥ c(E), where c(E) ∈ ℕ is the number of connected com-
ponents of E. Indeed, any convex component of E must lay inside some connected component of E. Therefore,
without loss of generality, in the following we will always assume that E is a connected set.

The first lower bound on the minimal number of convex components was given in [9, Theorem 1.1], where
the authors proved that

kmin(E) ≥ ⌈
Hn−1(∂E)

Hn−1(∂(co(E)))
⌉, (1.2)

where ⌈x⌉ ∈ ℤ denotes the upper integer part of x ∈ ℝ. Here and in the following, for all s ≥ 0 we let Hs be
the s-dimensional Hausdorff measure (in particular, H0 is the counting measure). Moreover, we let ∂E be the
boundary of E and co(E) be the convex hull of E. Note that, since E admits at least one decomposition as in (1.1),
Hn−1(∂E) and Hn−1(∂(co(E))) are two finite and strictly positive real numbers, see [9], so that the right-hand
side in (1.2) is well defined.

In the subsequent paper [6], the bound in (1.2) has been improved in the case n = 2 in the sense explained
in Section 1.3 for a class of compact sets E ⊂ ℝ2. In the same spirit, our aim is to provide a refined bound of the
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number kmin(E) in any dimension n ≥ 2. We stress that the estimate we are going to obtain also improves the
result in [6].

1.2 Monotonicity of perimeter

Theproof of (1.2) is based on the followingmonotonicity property of the perimeter: ifA ⊂ B ⊂ ℝn are two convex
bodies, then

Hn−1(∂A) ≤ Hn−1(∂B). (1.3)

Inequality (1.3) is well known since the ancient Greek (Archimedes himself took it as a postulate in his
work on the sphere and the cylinder, see [1, p. 36]) and can be proved in many different ways, for example
by exploiting either the Cauchy formula for the area surface or the monotonicity property of mixed volumes,
[2, Section 7], by using the Lipschitz property of the projection on a convex closed set, [3, Lemma 2.4], or finally
by observing that the perimeter is decreased under intersection with half-spaces, [10, Exercise 15.13]. Actually,
a deep inspection of the proof given in [3] shows that the convexity of B is not needed.

Anyway, in [9], a quantitative improvement of formula (1.3) has been obtained if A and B are both convex
bodies. Moreover, lower bounds for the perimeter deficit

δ(B, A) := Hn−1(∂B) −Hn−1(∂A)

with respect to the Hausdorff distance of A and B have been established for n = 2 in [4, 9], for n = 3 in [5] and
finally for all n ≥ 2 in [11].

In particular, if A ⊂ B are two convex bodies in ℝn , with n ≥ 2, then

Hn−1(∂A) + ωn−1rn−2h2

r + √r2 + h2
≤ Hn−1(∂B), (1.4)

where ωn = πn/2
Γ( n2 +1)

denotes the volume of the unit ball in ℝn , h = h(A, B) is the Hausdorff distance of A and B
and

r = n−1√Hn−1(B ∩ ∂H)
ωn−1

, H = {x ∈ ℝn : ⟨b − a, x − a⟩ ≤ 0},

with a ∈ A and b ∈ B such that |a − b| = h(A, B), see [11, Corollary 1.2] and Figure 1.
Actually, the main result of [11] provides a quantitative lower bound for the more general deficit

δΦ(B, A) := PΦ(B) − PΦ(A),

where PΦ stands for the anisotropic (Wulff) perimeter associated to the positively 1-homogeneous convex func-
tion Φ : ℝn → [0, +∞).

We conclude this subsection by underlying that the quantitative estimates of the perimeter deficit δ(B, A)
obtained in [4, 5, 11] are sharp in the sense that they hold as equalities in some cases, see Figure 1.
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Figure 1: The setting of the estimate (1.4) (on the left) with an example of equality (on the right).
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1.3 Improvement of (1.2) in the planar case

Taking advantage of the quantitative estimate (1.4) in the planar case proved in [5], in themore recent paper [6]
the authors were able to improve the lower bound (1.2) for n = 2 for a class of compact sets E ⊂ ℝ2 (see also [7]).
Precisely, if for a bounded closed 0 ̸= E ⊂ ℝ2 one can find q ∈ ℕ0, p ∈ ℕ and α ∈ (0, 1) such that any decompo-
sition of the form (1.1) admits p convex components Ei1 , . . . , Eip such that

h(Eij , co(E)) ≥ α diam(co(E)) for all j = 1, . . . , p (1.5)

and
qH1(∂(co(E))) −H1(∂E) < 4α2p

1 + √1 + 4α2
diam(co(E)), (1.6)

then
kmin(E) ≥ q + 1. (1.7)

Inequality (1.7) is sharp, in the sense that it holds as an equality in some cases.Moreover, it improves the previous
lower bound (1.2) in the case n = 2. Indeed, in [6] the authors exhibited an example for which (1.2) gives a strict
inequality while, on the contrary, (1.7) yields an equality.

The idea behind inequality (1.7) essentially relies on two ingredients. On the one hand, the use of the refined
estimate of the deficit obtained in [4] in place of the monotonicity property of the perimeter (1.3). On the other
hand, the idea of assuming (1.5) for a finite number p of the components, according to the observation that
some planar sets E ⊂ ℝ2 have some convex components whose Hausdorff distance from the convex hull co(E)
is comparable to the diameter of co(E) itself, independently of the chosen decomposition.

By a careful inspection of the proof of (1.7), one realizes that

kmin(E) ≥ ⌈
1

H1(∂(co(E)))
(H1(∂E) +

p
∑
j=1

4h(Eij , co(E))2

diam(co(E)) + √diam(co(E))2 + 4h(Eij , co(E))2
)⌉

and since the function
r 󳨃→ 4h

r + √r2 + 4h2

is monotone for r > 0, the assumption (1.5) yields

kmin(E) ≥ ⌈
1

H1(∂(co(E)))
(H1(∂E) + 4α2p

1 + √1 + 4α2
diam(co(E)))⌉, (1.8)

which is precisely (1.7), according to the best possible choice of q ∈ ℕ0 in (1.6).

1.4 Main result

The aim of the present paper is to improve inequality (1.2) for all n ≥ 2 exploiting the quantitativemonotonicity
of the perimeter (1.4) proved in [11], thus generalizing inequality (1.8) to higher dimensions. Before stating our
main result, we need to introduce the following notation.

Definition 1.1 (Maximal sectional radius). Let n ≥ 2 and let E ⊂ ℝn be a compact set with non-empty interior.
Given a direction ν ∈ ℝn , we let

ρν(E) = sup{ n−1√Hn−1(E ∩ (tν + ∂Hν))
ωn−1

: t ∈ ℝ}

be the maximal sectional radius of E in the direction ν, where Hν = {x ∈ ℝn : ⟨x, ν⟩ ≤ 0}. Note that, naturally,
ρ−ν(E) = ρν(E) for all ν ∈ ℝn .

With the above definition in force, our main result reads as follows.
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Theorem 1.2. Let n ≥ 2 and let E ⊂ ℝn be a compact set with non-empty interior. Assume that there exist p ∈ ℕ,
α ∈ (0, 1) and β ∈ [0, 1] with the following properties. For every family E1 , . . . , Ek , with k ∈ ℕ, of convex bodies
with non-empty interior such that E = ⋃ki=1 Ei , we can find a subfamily of p convex bodies Ei1 , . . . , Eip and a family
of corresponding p closed half-spaces such that Eij ⊂ Hij ,

h(co(E), co(E) ∩ Hij ) ≥ α diam(co(E)) (1.9)

and
Hn−1(co(E) ∩ ∂Hij ) ≥ βωn−1ρνij (co(E))

n−1 (1.10)

for all j = 1, . . . , p, where νij = aij − bij , with aij ∈ co(E) ∩ Hij and bij ∈ co(E) such that h(co(E) ∩ Hij , co(E)) =
|aij − bij | and Hij = {x ∈ ℝn : ⟨bij − aij , x − aij⟩ ≤ 0}. Then

kmin(E) ≥ ⌈
1

Hn−1(∂(co(E)))
(Hn−1(∂E) + ωn−1α2β

n−2
n−1 p
∑
j=1

ρνij (co(E))
n−2 diam(co(E))2

ρνij (co(E)) + √ρνij (co(E))
2 + α2 diam(co(E))2

)⌉.

(1.11)

1.5 Comments

First of all, let us remark that inequality (1.11) improves the previous lower bound (1.2). Indeed, inequality (1.11)
clearly reduces to the lower bound (1.2) as soon as one drops the additional assumptions on each of all possible
decompositions of the form (1.1). Moreover, inequality (1.11) holds as an equality in some cases for which (1.2)
gives a strict inequality only. We will give some explicit examples in Section 3 below.

Concerning the statement of Theorem 1.2, it is worth noting that the assumption (1.9) corresponds to (1.5),
while the additional assumption (1.10) comes into play for n ≥ 3 only.

In fact, if we take n = 2 in Theorem 1.2, then inequality (1.11) becomes

kmin(E) ≥ ⌈
1

H1(∂(co(E)))
(H1(∂E) + 2α2

p
∑
j=1

diam(co(E))2

ρνij (co(E)) + √ρνij (co(E))
2 + α2 diam(co(E))2

)⌉ (1.12)

(as it is customary, we use the convention 00 = 1) and the parameter β ∈ [0, 1] provided by (1.10) plays no role
in the final estimate (1.12). Consequently, the additional assumption in (1.10) can be dropped and one just needs
to choose the closed half-plane Hij ⊂ ℝ2 in such a way that

h(co(E) ∩ Hij , co(E)) = h(Eij , co(E)) for all j = 1, . . . , p,

which is always possible by the definition of the Hausdorff distance and the convexity of each component Eij .
Concerning the higher-dimensional case n ≥ 3, a control like the one in (1.10) seems reasonable to be

assumed. Indeed, as one may realize by looking at inequality (1.2), the set E ⊂ ℝn may have a convex compo-
nent very lengthened in one specific direction ν ∈ 𝕊n−1 which does not give a substantial contribution to the
total perimeter of E but, nevertheless, that strongly affects the total perimeter of the convex hull co(E).

In addition, we observe that the effectiveness of the lower bound (1.2) drastically changes when passing
from the planar case n = 2 to the non-planar case n ≥ 3. Indeed, if E ⊂ ℝ2 is a non-convex connected compact
set admitting at least one decomposition like (1.1), then

H1(∂(co(E))) < H1(∂E),

correctly implying that kmin(E) ≥ 2. As a matter of fact, in the planar case n = 2, the examples given in [6] pro-
vide the precise value of kmin(E) for q ≥ 2, since if q = 1 both inequalities (1.2) and (1.7) allow to conclude that
kmin(E) ≥ 2 only. However, aswe are going to showwith some examples in Section 3 below, there are non-convex
connected compact sets E ⊂ ℝn , with n ≥ 3, such that

Hn−1(∂(co(E))) ≥ Hn−1(∂E),

so that (1.2) only implies that kmin(E) ≥ 1. Nevertheless, inequality (1.11) given by Theorem 1.2 allows us to
recover the correct value of kmin(E) in these examples.
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Moreover, let us observe that, in the planar case n = 2, one can trivially bound

ρν(co(E)) ≤
diam(co(E))

2 for all ν ∈ 𝕊1 , (1.13)

so that inequality (1.12) gives back

kmin(E) ≥ ⌈
1

H1(∂(co(E)))
(H1(∂E) + 2pα2 diam(co(E))2

diam(co(E))
2 + √ diam(co(E))

2

4 + α2 diam(co(E))2
)⌉

= ⌈
1

H1(∂(co(E)))
(H1(∂E) + 4α2p

1 + √1 + 4α2
diam(co(E)))⌉,

that is the estimate in (1.8). Actually, because of the fact that the upper bound (1.13) can be too rough in general,
inequality (1.12) given by our Theorem 1.2 is more precise than the one in (1.8), as we are going to show in
Example 3.1 below.

Last but not least, we remark that both the lower bounds provided by estimates (1.2) and (1.11) are not stable
under smallmodifications of the compact set E ⊂ ℝn , n ≥ 2. In fact, the value of kmin(E)may be changedwithout
substantially altering neither the perimeters of E and of its convex hull co(E), nor all the other geometrical
quantities involved in (1.11), for example by gluing some additional tiny convex components to the original
set E.

1.6 Organization of the paper

The rest of the paper is organized as follows.
In Section 2 we detail the proof of our main result, Theorem 1.2. Our approach essentially follows the

strategy of [6], up to some minor modifications needed in order to exploit the quantitative estimate (1.4) in
conjunction with the notion of maximal radius introduced in Definition 1.1.

In Section 3 we provide some examples proving the effectiveness of our main result with respect to either
the general inequality (1.2) or its improvement (1.8) in the planar case, as already observed, due to the fact that
ρν(co(E)) ≤ diam(co(E))

2 for all ν ∈ 𝕊1.

2 Proof of Theorem 1.2

We recall that, if A ⊂ B are two compact sets in ℝn , with n ≥ 2, then the Hausdorff distance h(A, B) between A
and B can be written as

h(A, B) = max
b∈B

dist(A, b) = max
b∈B

min
a∈A
|a − b|.

As above, given 0 ̸= A ⊂ B two convex bodies in ℝn , with n ≥ 2, we let

δ(B, A) := Hn−1(∂B) −Hn−1(∂A) ≥ 0

be the perimeter deficit between A and B.

Proof of Theorem 1.2. Since E is compact, its convex hull co(E) is compact too, see [8, Corollary 3.1] for example.
As a consequence,Hn−1(∂(co(E))) < +∞. Arguing as in [6, Section 2], we can estimate

Hn−1(∂E) ≤ Hn−1(
k
⋃
i=1

∂Ei) ≤
k
∑
i=1

Hn−1(∂Ei) =
p
∑
j=1

Hn−1(∂Eij ) +
k
∑

j=p+1
Hn−1(∂Eij )

≤
p
∑
j=1
(Hn−1(∂(co(E))) − δ(co(E), Eij )) +

k
∑

j=p+1
Hn−1(∂(co(E)))

= kHn−1(∂(co(E))) −
p
∑
j=1

δ(co(E), Eij ),
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so that

⌈
Hn−1(∂E) + ∑pj=1 δ(co(E), Eij )

Hn−1(∂(co(E)))
⌉ ≤ k.

Now, since Eij ⊂ Hij , we observe that

δ(co(E), Eij ) = Hn−1(∂(co(E))) −Hn−1(∂Eij )
= (Hn−1(∂(co(E))) −Hn−1(∂(co(E) ∩ Hij ))) + (H

n−1(∂(co(E) ∩ Hij )) −H
n−1(∂Eij ))

= δ(co(E) ∩ Hij , Eij ) + δ(co(E), co(E) ∩ Hij )

≥ δ(co(E), co(E) ∩ Hij )

(2.1)

for all j = 1, . . . , p. Since h(co(E) ∩ Hij , co(E)) = |aij − bij | with aij ∈ co(E) ∩ Hij and bij ∈ co(E) such that

Hij = {x ∈ ℝn : ⟨bij − aij , x − aij⟩ ≤ 0},

we can thus apply (1.4) to each couple of convex bodies co(E) and co(E) ∩ Hij , with j = 1, . . . , p, and get

δ(co(E), co(E) ∩ Hij ) ≥
ωn−1rn−2ij h2ij
rij + √r2ij + h

2
ij

, (2.2)

where

hij = h(co(E), co(E) ∩ Hij ), rij =
n−1√Hn−1(co(E) ∩ ∂Hij )

ωn−1
.

By (1.10), we clearly have
β

1
n−1 ρνij (co(E)) ≤ rij ≤ ρνij (co(E)) (2.3)

for all j = 1, . . . , p. Inserting (2.3) into (2.2), we immediately obtain that

δ(co(E), co(E) ∩ Hij ) ≥
ωn−1β

n−2
n−1 ρνij (co(E))n−2h2ij

ρνij (co(E)) + √ρνij (co(E))
2 + h2ij

for all j = 1, . . . , p. Now, for any given c > 0, the function

s 󳨃→ s2

c + √c + s2

is strictly increasing for s > 0. Since hij ≥ α diam(co(E)) for all j = 1, . . . , p by (1.9), thanks to (2.1) we can finally
estimate

δ(co(E), Eij ) ≥
ωn−1α2β

n−2
n−1 ρνij (co(E))n−2 diam(co(E))2

ρνij (co(E)) + √ρνij (co(E))
2 + α2 diam(co(E))2

for all j = 1, . . . , p. In conclusion, we get

k ≥ ⌈ 1
Hn−1(∂(co(E)))

(Hn−1(∂E) +
p
∑
j=1

δ(Eij , co(E)))⌉

≥ ⌈
1

Hn−1(∂(co(E)))
(Hn−1(∂E) + ωn−1α2β

n−2
n−1 p
∑
j=1

ρνij (co(E))
n−2 diam(co(E))2

ρνij (co(E)) + √ρνij (co(E))
2 + α2 diam(co(E))2

)⌉

proving (1.11). The proof is thus complete.

3 Examples

We dedicate the remaining part of the paper to give some explicit examples of compact sets E ⊂ ℝn , n ≥ 2,
for which our main result applies. In each example, we will identify a point P ∈ ∂E and one convex compo-
nent Ej of E containing P and we will make a precise choice of parameters in order to satisfy the hypotheses of
Theorem 1.2.
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Figure 2: The set C ⊂ ℝ2 (on the left) and its convex hull (on the right).

3.1 An example inℝ2

We begin with the following example in ℝ2 showing that our Theorem 1.2 in the planar formulation (1.12), at
least in some cases, provides a strictly better estimate than the one in (1.8) previously established in [6]. This
example is based on the set C ⊂ ℝ2 shown in Figure 2, which was already considered in [9, Example 2.1] and
in [6, Example 3.1]. The set C depends on two parameters l > h > 0. In [6, Example 3.1], tomake the construction
work, it was necessary to assume that h ∈ (0, ε) for some ε ∈ (0, l) sufficiently small. In our situation, thanks to
the refined inequality (1.8), our choice of the parameter h is less restrictive, i.e., we are going to choose h ∈ (0, ε̄)
for some ε̄ ∈ (ε, l). As matter of fact, when h ∈ (ε, ε̄), our inequality (1.8) gives the correct value kmin(C) = 3,
while inequality (1.7) gives the lower bound kmin(C) ≥ 2 only.

Example 3.1 (The set C ⊂ ℝ2). Let l > h > 0 and consider the set C ⊂ ℝ2 in Figure 2. We can compute

H1(∂C) = 4l + 4h, H1(∂(co(C))) = 2l + 6h, diam(co(C)) = √l2 + 9h2 .

Since C is not convex, we must have that kmin(C) ≥ 2. After all, it is evident that kmin(C) = 3. Our argument will
give such right value for a larger class of parameters l > h > 0 than the one provided in [6, Example 3.1]. First
of all, notice that we do not deduce any further information from the result in [9]. Indeed, inequality (1.2) only
yields

kmin(C) ≥ ⌈
H1(∂C)

H1(∂(co(C)))
⌉ = 2,

since an elementary computation shows that

H1(∂C)
H1(∂(co(C)))

=
2l + 2h
l + 3h ∈ (1, 2)

whenever l > h > 0. We now consider the point P ∈ ∂C as shown in Figure 2. For every decomposition of C into
convex bodies, there exists a convex body Ej containing P. Since Ej is convex and contained in C, we must have
that Ej ⊂ Hj , where Hj is the half-space such that ∂Hj contains the face of C to which the point P belongs, see
Figure 2. Consequently, we must have

h(co(C) ∩ Hj , co(C)) = l − h, H1(co(C) ∩ ∂Hj) = 3h, ρνj (co(C)) =
3h
2 ,

where νj ∈ 𝕊1 is the inner unit normal of the half-space Hj as in Figure 2. Now let l > 0 be fixed. In [6], it has
been shown that, for any α ∈ (0, 1), p = 1 and h ≪ l, one has

⌈
H1(∂C) + 4α2

1+√1+4α2
diam(co(C))

H1(∂(co(C)))
⌉ = 3.

We now apply inequality (1.8) and Theorem 1.2 with

p = 1, α = l − h
√l2 + 9h2

, β = 0.

We claim that we can choose h ∈ (0, l) such that

⌈
H1(∂C) + 4α2

1+√1+4α2
diam(co(C))

H1(∂(co(C)))
⌉ = 2
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and
⌈

1
H1(∂(co(C)))

(H1(∂C) + 2α2 diam(co(C))2

ρνj (co(C)) + √ρνj (co(C))2 + α2 diam(co(C))2
)⌉ = 3.

In order to have both the claimed inequalities, it is sufficient to find h ∈ (0, l) such that

H1(∂C) + 4α2
1+√1+4α2

diam(co(C))
H1(∂(co(C)))

≤ 2 <
H1(∂C) + 2α2 diam(co(C))2

ρνj (co(C))+√ρνj (co(C))2+α2 diam(co(C))2

H1(∂(co(C)))
,

that is,
2(l + h) + 2α2

1+√1+4α2
√l2 + 9h2

l + 3h ≤ 2 <
2(l + h) + 2α2(l2+9h2)

3h+√9h2+4α2(l2+9h2)
l + 3h .

Up to some elementary algebraic computations, we need to find h ∈ (0, l) such that

(l − h)2

3h + √9h2 + 4(l − h)2
> 2h ≥ (l − h)2

√l2 + 9h2 + √l2 + 9h2 + 4(l − h)2
.

If we let h = tl for t ∈ (0, 1), then we just need to solve

{{
{{
{

1 − 5t2 − 2t − 2t√9t2 + 4(1 − t)2 > 0,

2t√1 + 9t2 + 2t√1 + 9t2 + 4(1 − t)2 − 1 − t2 + 2t ≥ 0,

and we let the reader check that the above system of inequalities admits solutions.

3.2 Some examples inℝ3

Wenow give some examples inℝ3 showing that for n = 3 our Theorem 1.2 provides an improvement of inequal-
ity (1.2) established in [9].

Example 3.2 (The set L ⊂ ℝ3). Let l > h > 0 and consider the set L ⊂ ℝ3 in Figure 3. We can compute

H2(∂L) = 4hl + 6h2 ,

H2(∂(co(L))) = 4hl + 5h2 + h√(l − h)2 + h2 ,

diam(co(L)) = √l2 + 5h2 .

Since L is not convex, we must have that kmin(L) ≥ 2, and a simple geometric argument allows to conclude that
kmin(L) = 2. From (1.2) we deduce that

kmin(L) ≥ ⌈
H2(∂L)

H2(∂(co(L)))
⌉ = 1,

since an elementary computation shows that

H2(∂L)
H2(∂(co(L)))

=
4l + 6h

4l + 5h + √(l − h)2 + h2
∈ (0, 1)

whenever l > h > 0. We now consider the point P ∈ ∂L as shown in Figure 3. For every decomposition of L into
convex bodies, there exists a convex body Ej containing P. Since Ej is convex and contained in L, we must have
that Ej ⊂ Hj , where Hj is the half-space such that ∂Hj contains the face of L to which the point P belongs, see
Figure 3. Consequently, we must have

h(co(L) ∩ Hj , co(L)) = l − h, H2(co(L) ∩ ∂Hj) = 2h2 , ρνj (co(L)) = √
2h2
π

,
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Figure 3: The set L ⊂ ℝ3 (on the left) and its convex hull (on the right).

where νj ∈ 𝕊2 is the inner unit normal of the half-space Hj as in Figure 3. We now let l > 0 be fixed. We apply
Theorem 1.2 with

p = 1, α = l − h
√l2 + 5h2

, β = 1.

Provided that we choose h ∈ (0, l) sufficiently small, we conclude that

kmin(L) ≥ ⌈
1

4hl + 5h2 + h√(l − h)2 + h2
(4hl + 6h2 + π( l − h

√l2 + 5h2
)
2 √ 2h2π (√l2 + 5h2)

2

√ 2h2π + √
2h2
π + (

l−h
√l2+5h2
)2(√l2 + 5h2)2

)⌉

= ⌈
1

4l + 5h + √(l − h)2 + h2
(4l + 6h +

√2π(l − h)2

√ 2h2π + √
2h2
π + (l − h)2

)⌉ = 2,

since

lim
h→0+

4l + 6h + √2π(l−h)2

√ 2h2
π +√

2h2
π +(l−h)2

4l + 5h + √(l − h)2 + h2
=
4 + √2π

5 ∈ (1, 2).

Example 3.3 (The set D inℝ3). Let l > 2h > 0 and consider the set D ⊂ ℝ3 in Figure 4. We can compute

H2(∂D) = 12lh + 4h√(l − h)2 + h2 + 4h√(l − 2h)2 + h2 + 23h2 ,

H2(∂(co(D))) = 9lh + 4h√(l − h)2 + h2 + 25h2 ,

diam(co(D)) = √l2 + 25h2 .

Since D is not convex, we must have that kmin(D) ≥ 2, and a simple geometric argument allows to conclude that
kmin(D) = 3. From (1.2) we deduce that

kmin(D) ≥ ⌈
H2(∂D)

H2(∂(co(D)))
⌉ = 2,

since an elementary computation shows that

H2(∂D)
H2(∂(co(D)))

=
12l + 4√(l − h)2 + h2 + 4√(l − 2h)2 + h2 + 23h

9l + 4√(l − h)2 + h2 + 25h
∈ (1, 2)

whenever l > 2h > 0. We now consider the point P ∈ ∂D as shown in Figure 4. For every decomposition of D
into convex bodies, there exists a convex body Ej containing P. Since Ej is convex and contained in D, we must
have that Ej ⊂ Hj , where Hj is the half-space such that ∂Hj contains the face of D to which the point P belongs,
see Figure 4. Consequently, we must have

h(co(D) ∩ Hj , co(D)) = l − h, H2(co(D) ∩ ∂Hj) = 12h2 , ρνj (co(D)) = √
12h2
π

,

where νj ∈ 𝕊2 is the inner unit normal of the half-space Hj as in Figure 4. We now let l > 0 be fixed. We apply
Theorem 1.2 with

p = 1, α = l − h
√l2 + 25h2

, β = 1.
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Figure 4: The set D ⊂ ℝ3 (on the left) and its convex hull (on the right).

Provided that we choose h ∈ (0, l2) sufficiently small, we conclude that

kmin(D) ≥ ⌈
1

H2(∂(co(D)))
(H2(∂D) + π( l − h

√l2 + 25h2
)
2 √ 12h2π (√l2 + 25h2)

2

√ 12h2π + √
12h2
π + (

l−h
√l2+25h2
)2(√l2 + 25h2)2

)⌉

= ⌈
1

9l+4√(l−h)2+h2+25h
(12l+4√(l−h)2+h2+4√(l−2h)2+h2+23h+

√12π(l−h)2

√ 12h2π +√
12h2
π +(l−h)2

)⌉

= 3,

since

lim
h→0+

12l + 4√(l − h)2 + h2 + 4√(l − 2h)2 + h2 + 23h + √12π(l−h)2

√ 12h2
π +√

12h2
π +(l−h)2

9l + 4√(l − h)2 + h2 + 25h
=
20 + √12π

13 ∈ (2, 3).

Example 3.4 (The set U inℝ3). Let l > 3h > 0 and consider the set U ⊂ ℝ3 in Figure 5. We can compute

H2(∂U) = 4hl + 10h2 , H2(∂(co(U))) = 6hl + 4h2 , diam(co(U)) = √l2 + 5h2 .

Since U is not convex, wemust have that kmin(U) ≥ 2, and a simple geometric argument allows to conclude that
kmin(U) = 3. From (1.2) we deduce that

kmin(U) ≥ ⌈
H2(∂U)

H2(∂(co(U)))
⌉ = 1,

since an elementary computation shows that

H2(∂U)
H2(∂(co(U)))

=
4l + 10h
6l + 4h ∈ (0, 1)

whenever l > 3h > 0.We now consider the points P, Q ∈ ∂U as shown in Figure 5. For every decomposition of U
into convex bodies, there exists two convex bodies Ej and Ek containing P and Q respectively. Since the segment
PQ is not contained in U , it follows that Ej cannot contain Q. Since Ej is convex and contained in U , we must
have that Ej ⊂ Hj , where Hj is the half-space such that ∂Hj contains the face of U to which the point P belongs,
see Figure 5. Consequently, we must have

h(co(U) ∩ Hj , co(U)) = l − h, H2(co(U) ∩ ∂Hj) = 2h2 , ρνj (co(U)) = √
2h2
π

,

where νj ∈ 𝕊2 is the inner unit normal of the half-space Hj as in Figure 5. By the symmetry of U , a similar argu-
ment can be used for the convex component Ek containing Q. We now let l > 0 be fixed. We apply Theorem 1.2
with

p = 2, α = l − h
√l2 + 5h2

, β = 1.
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Figure 5: The set U ⊂ ℝ3 (on the left) and its convex hull (on the right).

Provided that we choose h ∈ (0, l3 ) sufficiently small, we conclude that

kmin(U) ≥ ⌈
1

6hl + 4h2
(4hl + 10h2 + 2π( l − h

√l2 + 5h2
)
2 √ 2h2π (√l2 + 5h2)

2

√ 2h2π + √
2h2
π + (

l−h
√l2+5h2
)2(√l2 + 5h2)2

)⌉

= ⌈
1

6l + 4h(4l + 10h +
2√2π(l − h)2

√ 2h2π + √
2h2
π + (l − h)2

)⌉ = 2,

since

lim
h→0+

4l + 10h + 2√2π(l−h)2

√ 2h2
π +√

2h2
π +(l−h)2

6l + 4h =
4 + 2√2π

6 ∈ (1, 2).

The above computations prove that, in this case, although the lower bound given by (1.11) is strictly better than
the one given by (1.2), inequality (1.11) is not sharp.

3.3 An example inℝn

We conclude this section with Example 3.6 below, showing that for all n ≥ 3 our Theorem 1.2 provides an
improvement of inequality (1.2) established in [9]. In Example 3.6 we will need to apply the following result,
whose elementary proof is detailed below for the reader’s convenience.

Lemma 3.5. Let ℓ ∈ (0, +∞) and let Q ⊂ ℝ2 be a set with

H1(∂Q) < +∞ and H2(Q) < +∞.

If En = Q × [0, ℓ]n−2 ⊂ ℝn , then

Hn−1(∂En) = ℓn−2H1(∂Q) + 2(n − 2)ℓn−3H2(Q) (3.1)

for all n ≥ 2.

Proof. By definition, the set En ⊂ ℝn satisfies

Hn(En) = ℓn−2H2(Q). (3.2)

Moreover, since we can recursively write En = En−1 × [0, ℓ] and thus

∂En = ((∂En−1) × [0, ℓ]) ∪ (En−1 × {0, ℓ}),

by the coarea formula we can compute

Hn−1(∂En) = 2Hn−1(En−1) + ℓHn−2(∂En−1)

for all n ≥ 2. The validity of (3.1) can thus be checked by induction, thanks to (3.2).

Example 3.6 (The set Ln ⊂ ℝn for n ≥ 3). Let l > h > 0 and λ > 1 and consider the set Ln = L2 × [0, h]n−2 ⊂ ℝn
for n ≥ 3, where L2 ⊂ ℝn is the set in Figure 6. Note that

H1(∂L2) = 2l + 2λh, H2(L2) = h(l + (λ − 1)h)
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Figure 6: The body L2 ⊂ ℝ2 (on the left) and its convex hull (on the right).

and, similarly,

H1(∂(co(L2))) = l + √(l − h)2 + (λ − 1)2h2 + (λ + 2)h,

H2(co(L2)) =
h
2 ((λ + 1)l + (λ − 1)h).

Since co(Ln) = co(L2) × [0, h]n−2, we can apply Lemma 3.5 to compute

Hn−1(∂Ln) = 2hn−2((n − 1)l + ((n − 1)λ − n + 2))h),

Hn−1(∂(co(Ln))) = hn−2(((n − 2)λ + n − 1)l + √(l − h)2 + (λ − 1)2h2 + ((n − 1)λ − n + 4)h),

diam(co(Ln)) = √l2 + (λ2 + n − 2)h2

for all n ≥ 3. Note that Ln is not convex, so we must have that kmin(Ln) ≥ 2 for all n ≥ 3. In fact, a simple geo-
metric decomposition proves that kmin(Ln) = 2 for all n ≥ 3. We now consider the point P = (P󸀠 , 0) ∈ Ln , where
P󸀠 ∈ ∂L2 is shown in Figure 6. For every decomposition of Ln into convex bodies, there exists a convex body Ej
containing P. Since Ej is convex and contained in Ln , we must have that its projection E󸀠j = Pℝ2 (Ej) is a convex
body contained in L2 ∩ H󸀠j , where Pℝ2 : ℝ

n → ℝ2 is the canonical projection onto the first two coordinates and
H󸀠j is the half-plane such that ∂H

󸀠
j contains the face of L2 to which the point P belongs, see Figure 6. Therefore,

we must have that Ej ⊂ Hj , where Hj is the half-space Hj = P−1ℝ2 (H
󸀠
j ) ⊂ ℝ

n . Consequently, we must have

h(co(Ln) ∩ Hj , co(Ln)) = l − h, Hn−1(co(Ln) ∩ ∂Hj) = λhn−1 , ρνj (co(Ln)) =
n−1√ λhn−1

ωn−1
,

where νj ∈ 𝕊n−1 is the inner unit normal of the half-space Hj (precisely, νj = (ν󸀠j , 0), where ν
󸀠
j is the inner unit

normal of H󸀠j , see Figure 6). We now let l > 0 be fixed. We apply Theorem 1.2 with

p = 1, α = l − h
√l2 + (λ2 + n − 2)h2

, β = 1.

We are going to choose λ > 1 as a dimensional constant and h ∈ (0, l) sufficiently small. Indeed, for any given
λ > 1, we have that

lim
h→0+ Hn−1(∂Ln)

Hn−1(∂(co(Ln)))
=

2n − 2
(n − 2)λ + n

and, similarly,

lim
h→0+

Hn−1(∂Ln) + ωn−1α2β
n−2
n−1 ρνj (co(Ln))

n−2 diam(co(Ln))2
ρνj (co(Ln))+√ρνj (co(E))2+α2 diam(co(Ln))2

Hn−1(∂(co(Ln)))
=
2n − 2 + cnλ

n−2
n−1

(n − 2)λ + n ,

where cn = ω
1

n−1
n−1 > 0 is a dimensional constant. Since λ > 1, we have that

2n − 2
(n − 2)λ + n < 1 for all n ≥ 3.

On the other hand, we obviously have

2n − 2 + cnλ
n−2
n−1

(n − 2)λ + n > 1 ⇐⇒ λ
n−2
n−1 > n − 2

cn
(λ − 1)
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and it is possible to verify that the last inequality admits solutions in the interval (1, +∞). Consequently, for
each n ≥ 3 we can find λn ∈ (1, +∞) such that

2n − 2 + cnλ
n−2
n−1
n

(n − 2)λn + n
> 1.

Therefore, provided that we choose λ = λn as above and h ∈ (0, l) sufficiently small, we conclude that the set
Ln ⊂ ℝn corresponding to these choices of parameters satisfies

⌈
Hn−1(∂Ln)

Hn−1(∂(co(Ln)))
⌉ = 1

and

⌈
1

Hn−1(∂(co(Ln)))
(Hn−1(∂Ln) + ωn−1α2β

n−2
n−1 ρνij (co(Ln))

n−2 diam(co(Ln))2

ρνj (co(Ln)) + √ρνj (co(E))2 + α2 diam(co(Ln))2
)⌉ = 2.
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