Multidisciplinary design optimization (MDO) involving aero-elastic simulations still proves challenging for computational cost. This paper proposes a competitive cost-effective multi-fidelity MDO strategy based on two ideas. Firstly, a new multi-fidelity fluid-structure interaction model (MF-FSI) is proposed, allowing a considerable saving of the FSI simulation cost. Secondly, the optimization cost is further reduced using a meta-model approximation of the MF-FSI computations during optimization. Therefore, the MF-FSI model is validated on an experimental case of supersonic projectile fins. Then, it is combined with a meta-model-based optimization strategy (MBO) to improve the fins design. The constrained multi-objective problem aiming to maximize the lift-to-drag ratio and minimize the fin mass is solved using both high-fidelity (HFMDO) and multi-fidelity (MFMDO). The results showed that the proposed MFMDO strategy could produce the same optimal solutions as the HFMDO one with a 52% lower cost.
Multi-fidelity multidisciplinary meta-model based optimization of a slender body with fins
Magrini A.;Benini E.
2024
Abstract
Multidisciplinary design optimization (MDO) involving aero-elastic simulations still proves challenging for computational cost. This paper proposes a competitive cost-effective multi-fidelity MDO strategy based on two ideas. Firstly, a new multi-fidelity fluid-structure interaction model (MF-FSI) is proposed, allowing a considerable saving of the FSI simulation cost. Secondly, the optimization cost is further reduced using a meta-model approximation of the MF-FSI computations during optimization. Therefore, the MF-FSI model is validated on an experimental case of supersonic projectile fins. Then, it is combined with a meta-model-based optimization strategy (MBO) to improve the fins design. The constrained multi-objective problem aiming to maximize the lift-to-drag ratio and minimize the fin mass is solved using both high-fidelity (HFMDO) and multi-fidelity (MFMDO). The results showed that the proposed MFMDO strategy could produce the same optimal solutions as the HFMDO one with a 52% lower cost.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.