In this paper we present a novel scientific machine learning reinterpretation of the well-known Kalman Filter, we explain its flexibility in dealing with partially-unknown models and show its effectiveness in a couple of situations where the classic Kalman Filter is problematic.
State Estimation of Partially Unknown Dynamical Systems with a Deep Kalman Filter
Chinellato E.;Marcuzzi F.
2024
Abstract
In this paper we present a novel scientific machine learning reinterpretation of the well-known Kalman Filter, we explain its flexibility in dealing with partially-unknown models and show its effectiveness in a couple of situations where the classic Kalman Filter is problematic.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
978-3-031-63775-9_22.pdf
Accesso riservato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Accesso privato - non pubblico
Dimensione
3.72 MB
Formato
Adobe PDF
|
3.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




