PurposeAccurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.MethodsRecorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.ResultsThe YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.ConclusionsThe study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.

Artificial intelligence for automatic detection and segmentation of nasal polyposis: a pilot study

Saccardo, Tommaso;Ferrari, Marco;Nicolai, Piero;
2024

Abstract

PurposeAccurate diagnosis and quantification of polyps and symptoms are pivotal for planning the therapeutic strategy of Chronic rhinosinusitis with nasal polyposis (CRSwNP). This pilot study aimed to develop an artificial intelligence (AI)-based image analysis system capable of segmenting nasal polyps from nasal endoscopy videos.MethodsRecorded nasal videoendoscopies from 52 patients diagnosed with CRSwNP between 2019 and 2022 were retrospectively analyzed. Images extracted were manually segmented on the web application Roboflow. A dataset of 342 images was generated and divided into training (80%), validation (10%), and testing (10%) sets. The Ultralytics YOLOv8.0.28 model was employed for automated segmentation.ResultsThe YOLOv8s-seg model consisted of 195 layers and required 42.4 GFLOPs for operation. When tested against the validation set, the algorithm achieved a precision of 0.91, recall of 0.839, and mean average precision at 50% IoU (mAP50) of 0.949. For the segmentation task, similar metrics were observed, including a mAP ranging from 0.675 to 0.679 for IoUs between 50% and 95%.ConclusionsThe study shows that a carefully trained AI algorithm can effectively identify and delineate nasal polyps in patients with CRSwNP. Despite certain limitations like the focus on CRSwNP-specific samples, the algorithm presents a promising complementary tool to existing diagnostic methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3531225
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact