Anomaly Detection is a relevant problem in numerous real-world applications, especially when dealing with images. However, little attention has been paid to the issue of changes over time in the input data distribution, which may cause a significant decrease in performance. In this study, we investigate the problem of Pixel-Level Anomaly Detection in the Continual Learning setting, where new data arrives over time and the goal is to perform well on new and old data. We implement several state-of-the-art techniques to solve the Anomaly Detection problem in the classic setting and adapt them to work in the Continual Learning setting. To validate the approaches, we use a real-world dataset of images with pixel-based anomalies to provide a reliable benchmark and serve as a foundation for further advancements in the field. We provide a comprehensive analysis, discussing which Anomaly Detection methods and which families of approaches seem more suitable for the Continual Learning setting.

Unveiling the Anomalies in an Ever-Changing World: A Benchmark for Pixel-Level Anomaly Detection in Continual Learning

M. Barusco;D. Dalle Pezze;G. A. Susto
2024

Abstract

Anomaly Detection is a relevant problem in numerous real-world applications, especially when dealing with images. However, little attention has been paid to the issue of changes over time in the input data distribution, which may cause a significant decrease in performance. In this study, we investigate the problem of Pixel-Level Anomaly Detection in the Continual Learning setting, where new data arrives over time and the goal is to perform well on new and old data. We implement several state-of-the-art techniques to solve the Anomaly Detection problem in the classic setting and adapt them to work in the Continual Learning setting. To validate the approaches, we use a real-world dataset of images with pixel-based anomalies to provide a reliable benchmark and serve as a foundation for further advancements in the field. We provide a comprehensive analysis, discussing which Anomaly Detection methods and which families of approaches seem more suitable for the Continual Learning setting.
2024
Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024).
2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
9798350365474
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3531204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact