We numerically analyze the feasibility of a platform-neutral, general strategy to perform quantum simulations of fermionic lattice field theories under open boundary conditions. The digital quantum simulator requires solely one- and two-qubit gates and is scalable since integrating each Hamiltonian term requires a finite (non-scaling) cost. The exact local fermion encoding we adopt relies on auxiliary $\mathbb{Z}_2$ lattice gauge fields by adding a pure gauge Hamiltonian term akin to the Toric Code. By numerically emulating the quantum simulator real-time dynamics, we observe a timescale separation for spin- and charge-excitations in a spin-$\frac{1}{2}$ Hubbard ladder in the $t-J$ model limit.
Digital quantum simulation of lattice fermion theories with local encoding
Marco Ballarin
;Giovanni Cataldi;Marco Di Liberto;Ilaria Siloi;Simone Montangero;Pietro Silvi
2024
Abstract
We numerically analyze the feasibility of a platform-neutral, general strategy to perform quantum simulations of fermionic lattice field theories under open boundary conditions. The digital quantum simulator requires solely one- and two-qubit gates and is scalable since integrating each Hamiltonian term requires a finite (non-scaling) cost. The exact local fermion encoding we adopt relies on auxiliary $\mathbb{Z}_2$ lattice gauge fields by adding a pure gauge Hamiltonian term akin to the Toric Code. By numerically emulating the quantum simulator real-time dynamics, we observe a timescale separation for spin- and charge-excitations in a spin-$\frac{1}{2}$ Hubbard ladder in the $t-J$ model limit.File | Dimensione | Formato | |
---|---|---|---|
DigitalQuantumSimulationOfLatticeFermionTheoriesWithLocalEncoding.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
2.94 MB
Formato
Adobe PDF
|
2.94 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.