We propose a degenerate risk sensitive filter which is an extension of the risk sensitive filtering paradigm to the case in which the evolution of the covariance matrix of the prediction error can be singular. We show that the corresponding risk sensitive Riccati iteration, describing the evolution of the covariance matrix of the prediction error, converges if the risk sensitivity parameter and the eigenvalues of the initial covariance matrix are sufficiently small.

On the convergence of degenerate risk sensitive filters

Zorzi, Mattia
;
Yi, Shenglun
2024

Abstract

We propose a degenerate risk sensitive filter which is an extension of the risk sensitive filtering paradigm to the case in which the evolution of the covariance matrix of the prediction error can be singular. We show that the corresponding risk sensitive Riccati iteration, describing the evolution of the covariance matrix of the prediction error, converges if the risk sensitivity parameter and the eigenvalues of the initial covariance matrix are sufficiently small.
File in questo prodotto:
File Dimensione Formato  
RSlowrankRF.pdf

accesso aperto

Descrizione: paper
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 360.54 kB
Formato Adobe PDF
360.54 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3525142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact