In recent years, the mobility sector is undergoing a revolution, which is resulting also into a worldwide spread of light electric vehicles, such as electric scooters and bicycles. The increasing public concern about environmental problems further feeds this revolution. Electric-bicycles (or e-bikes) are a new trend which fits different riders' needs. In fact, they offer extended range and ease of use, allowing riders to travel in urban centres, but also to take longer trips. E-bikes are reliable, easy to ride, affordable, and they help people live and travel a little greener, with a great benefit for their health. Many Companies (such as Brose, Bafang, Bosch and Shimano) developed performing e-bike motor drives. However, there is not a detailed general procedure to help the choice and design of electric bikes, in particular concerning the electric machine. This review focuses on the analysis of different motors for e-bike application. First, the e-bike system state of art is presented. The pedal-assist and power-on-demand e-bike system typologies are presented, together with the most popular parallel configuration and the less common series configuration. Further on, the environmental resistances are analysed for a traditional bicycle system and then the force balance is extended to the electric vehicle example. The most common Lithium-ion battery and the battery management system state of art is discussed, presenting design schemes and typical performances. Concerning the electrical machine, some electromagnetic design approaches are described, together with some data on commercial motors. Finite element analysis of a common motor model is carried out and some experimental tests are presented to highlight their capabilities. Different control strategies are compared, including innovative solutions and new trends.

E-Bike Motor Drive: A Review of Configurations and Capabilities

Contò, Chiara
Writing – Original Draft Preparation
;
Bianchi, Nicola
Supervision
2023

Abstract

In recent years, the mobility sector is undergoing a revolution, which is resulting also into a worldwide spread of light electric vehicles, such as electric scooters and bicycles. The increasing public concern about environmental problems further feeds this revolution. Electric-bicycles (or e-bikes) are a new trend which fits different riders' needs. In fact, they offer extended range and ease of use, allowing riders to travel in urban centres, but also to take longer trips. E-bikes are reliable, easy to ride, affordable, and they help people live and travel a little greener, with a great benefit for their health. Many Companies (such as Brose, Bafang, Bosch and Shimano) developed performing e-bike motor drives. However, there is not a detailed general procedure to help the choice and design of electric bikes, in particular concerning the electric machine. This review focuses on the analysis of different motors for e-bike application. First, the e-bike system state of art is presented. The pedal-assist and power-on-demand e-bike system typologies are presented, together with the most popular parallel configuration and the less common series configuration. Further on, the environmental resistances are analysed for a traditional bicycle system and then the force balance is extended to the electric vehicle example. The most common Lithium-ion battery and the battery management system state of art is discussed, presenting design schemes and typical performances. Concerning the electrical machine, some electromagnetic design approaches are described, together with some data on commercial motors. Finite element analysis of a common motor model is carried out and some experimental tests are presented to highlight their capabilities. Different control strategies are compared, including innovative solutions and new trends.
2023
File in questo prodotto:
File Dimensione Formato  
energies-16-00160.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3521993
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact