An increasing awareness about the impact of civil air transportation emissions is currently driving a low-carbon technology transition, towards more sustainable propulsion strategies. Boundary layer ingesting systems are one of the most promising solutions, as a closer integration between fuselage and propulsors is considered a key in the achievement of more sustainable architectures. Such architecture is characterized by a high level of integration between the airframe and propulsors, making the design process become a major challenge. The present work deals with a complete CFD based design and optimization of a propulsive fuselage concept, both in terms of airframe shape and fan design.
Numerical and experimental studies on BLI propulsor architectures
Magrini A.;Benini E.;
2023
Abstract
An increasing awareness about the impact of civil air transportation emissions is currently driving a low-carbon technology transition, towards more sustainable propulsion strategies. Boundary layer ingesting systems are one of the most promising solutions, as a closer integration between fuselage and propulsors is considered a key in the achievement of more sustainable architectures. Such architecture is characterized by a high level of integration between the airframe and propulsors, making the design process become a major challenge. The present work deals with a complete CFD based design and optimization of a propulsive fuselage concept, both in terms of airframe shape and fan design.File | Dimensione | Formato | |
---|---|---|---|
Numerical-and-experimental-studies-on-BLI-propulsor-architecturesMaterials-Research-Proceedings.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
870.29 kB
Formato
Adobe PDF
|
870.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.