We study the deep relation existing between differential logical relations and incremental computing by showing how self-differences in the former precisely correspond to derivatives in the latter. The byproduct of such a relationship is twofold: on the one hand, we show how differential logical relations can be seen as a powerful meta-theoretical tool in the analysis of incremental computations, enabling an easy proof of soundness of differentiation. On the other hand, we generalize differential logical relations so as to be able to interpret full recursion, something not possible in the original system.

Differential logical relations, part II increments and derivatives

Gavazzo F.
2021

Abstract

We study the deep relation existing between differential logical relations and incremental computing by showing how self-differences in the former precisely correspond to derivatives in the latter. The byproduct of such a relationship is twofold: on the one hand, we show how differential logical relations can be seen as a powerful meta-theoretical tool in the analysis of incremental computations, enabling an easy proof of soundness of differentiation. On the other hand, we generalize differential logical relations so as to be able to interpret full recursion, something not possible in the original system.
File in questo prodotto:
File Dimensione Formato  
TCS_2021 (1).pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 411.69 kB
Formato Adobe PDF
411.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3510753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact