
Differential Logical Relations, Part II

Increments and Derivatives

Ugo Dal Lago∗, Francesco Gavazzo∗

Abstract

We study the deep relation existing between differential logical relations and
incremental computing by showing how self-differences in the former precisely
correspond to derivatives in the latter. The byproduct of such a relationship
is twofold: on the one hand, we show how differential logical relations can
be seen as a powerful meta-theoretical tool in the analysis of incremental
computations, enabling an easy proof of soundness of differentiation. On
the other hand, we generalize differential logical relations so as to be able to
interpret full recursion, something not possible in the original system.

Keywords: differential logical relations, differential semantics, incremental
lambda calculus, program difference, program derivatives

1. Introduction

One of the major challenges programming language theory is facing these
days is the development of adequate abstractions to deal with the highly in-
creasing complexity and heterogeneity of modern software systems. Indeed,
since the very birth of the discipline, researchers have been focused on the
design of compositional techniques for software analysis whereby one can
study the overall behavior of a system by inspecting its constituent parts in
isolation. A prime example of the successfulness of such an analysis is given
by the theory of program equivalence. Notwithstanding its successful history,
program equivalence is revealing some weaknesses when applied to nowa-
days software, where exact reasoning about components is, either because

∗Univesrity of Bologna & INRIA Sophia Antipolis
Email addresses: ugodallago@unibo.it (Ugo Dal Lago),

francesco.gavazzo2@unibo.it (Francesco Gavazzo)

Preprint submitted to Theoretical Computer Science March 19, 2024

of the very nature of the software involved or because of the cost of such
an analysis, oftentimes not feasible. Examples witnessing such weaknesses
are given by the fields of probabilistic computing, where small perturbations
in probabilities break equivalence, numerical computing, where program im-
plementing numerical functions can be optimized at the price of introducing
an acceptable error in the output, and, more generally, approximate comput-
ing (Mittal, 2016) where accuracy of the result is partially sacrificed to gain
efficiency.

The common pattern behind all the aforementioned examples is the shift
from an exact analysis of software, whereby equivalent pieces of software are
interchangeable within any system, to an approximate analysis of software,
whereby non-equivalent pieces of software are replaced within a system at
the price of producing an acceptable error, and thus an approximately cor-
rect result. Moving from an exact to an approximate analysis of programs
poses several challenges to programming language semantics, the main one
arguably concerning compositionality. In fact, once we replace a program
P with a non-equivalent one Q in a system C[−], then C[−] may amplify
the error introduced by the replacement of P with Q, this way invalidating
compositionality of the analysis. This point becomes evident when studying
(higher-order) program metric or program distance (Reed and Pierce, 2010;
Crubillé and Dal Lago, 2017; Gavazzo, 2018; de Amorim et al., 2017): if the
distance between P and Q is upper bounded by a number ε > 0, then it may
not be so for C[P] and C[Q].

Motivated by these general observations, researchers are showing an in-
creasing interest in quantitative analysis of programs, with a special focus on
differential properties of programs. Although the expression differential has
no precise meaning in this context, we may identify it with the collection of
properties relating local and global changes in software. Thus, for instance,
we can think of the (error produced by the) replacement of P with Q as
a local change, and investigate its relationship with the global change we
observe between C[P] and C[Q].

The study of such differential properties has led, oftentimes abusing ter-
minology, to the development of several notions of a program derivative.
Among those, some of the main ones one encounters when looking at the
relevant literature are the following:
• Those coming from the field of automatic differentiation (Bartholomew-
Biggs et al., 2000), which aim to extend the notion of a derivative one finds
in mathematical analysis (Spivak, 1971) to arbitrary programs. Examples

2

are given by (Brunel et al., 2020; Abadi and Plotkin, 2020; Shaikhha et al.,
2019; Barthe et al., 2020), as well as by references therein.

• Those coming from the differential λ-calculus (Ehrhard and Regnier, 2003),
whose original motivations rely on quantitative semantics (Girard, 1988)
and linear logic (Girard, 1987).

• Those coming from incremental computing (Ramalingam and Reps, 1993;
Paige and Koenig, 1982), which aim to find ways to incrementally compute
outputs as inputs changes.

• Those coming from differential logical relations (Dal Lago et al., 2019)
via the notion of a self-difference, which aim to provide context-sensitive
compositional distances between programs.
It is thus natural to ask whether any connections exist between such

notions. Although for some of the aforementioned cases the answer seems to
be negative (for instance, the derivatives one finds in incremental computing
are generalizations of finite differences (Richardson, 1954), whereas the ones
found in calculi for automatic differentiation are actual derivatives), others
have conceptual similarities. This is the case for differential logical relations
and incremental computing, as both study the relationship between input
and output changes.

In this paper, we study such similarities and establish a formal connection
between differential logical relations and incremental computing, by showing
how self-differences in the former precisely correspond to derivatives in the
latter. In fact, as we will see, the derivative of a program P can be seen as
a way to quantify how much changes in the input of P influence changes in
its output, this way acting as a self-difference for P . Besides its conceptual
implications, the advantages of such a correspondence are twofold. On the
one hand, differential logical relations qualify as a lightweight operational
technique for incremental computing: we witness that by giving a proof of
soundness of differentiation for the incremental λ-calculus (Cai et al., 2014).
On the other hand, we can use results coming from incremental computing to
go beyond the current theory of differential logical relations. We witness that
by relying on the work by Giarrusso, Régis-Gianas, and Schuster (Giarrusso
et al., 2019) on untyped program derivatives to define a form of step-indexed
differential logical relations, this way giving differential semantics to calculi
with full recursion (something not possible in the original formulation of
differential logical relations (Dal Lago et al., 2019)).

3

Structure of the Paper. In Section 2, we introduce the target calculus of this
work as well as differential logical relations and the incremental λ-calculus.
In Section 3, we establish a formal connection between differential logical
relations and the incremental λ-calculus by showing that program deriva-
tives (in the sense of incremental computing) are self-distances (in the sense
of differential logical relations). Additionally, we give a differential logical
relation-based proof of soundness of differentiation, the main result in the
theory of incremental computing. In Section 4 we show how to extend the
theory developed in Section 3 to a language with sum and list types. Finally,
in Section 5 we take advantage of the connection between differential logical
relations and incremental computing by extending the former to a calculus
with full recursion.

2. Preliminaries: Differential Logical Relations and the Incremen-
tal λ-calculus

In this section, we shortly review the main ideas behind differential logical
relations (DLRs) and the incremental λ-calculus. To do so, we introduce
the vehicle calculus of this work, namely a simply typed λ-calculus with
a primitive type for real numbers, which we denote by STR. The calculus
is standard and it is essentially the same calculus used by Dal Lago et al.
to define differential logical relations (Dal Lago et al., 2019). The syntax
and static semantics of STR are given in Figure 1, where we assume to have
primitives r for any real number r and constants φ for any function1 φ :
Rn → R.

We use letters t, s, . . . to range over terms, and v, w, . . . to range over val-
ues. We follow standard notational conventions (Barendregt, 1985). Accord-
ingly, we work with terms modulo renaming of bound variables and denote by
t[s/x] the capture-avoiding substitution of s for x in t. Contexts, i.e. terms
with a hole [−], are denoted by the letters C,D, . . . and we write C[t] for
the capture-binding substitution of t for the hole [−] in C. We write Λσ and
Vσ for the collections of terms and values of type σ, respectively, omitting
subscripts when types are not relevant. Finally, we use the notation Λ•

σ and
V•
σ for the sets of closed terms and closed values of type σ (again, omitting

1When dealing with standard arithmetic operator, such as +, we will overload the
notation and write + in place of +.

4

σ, τ ::= R | σ × τ | σ → τ

t, s ::= x | r | φ | ⟨t, s⟩ | λx.t | out1 t | out2 t | ts

v, w ::= x | r | φ | ⟨v, w⟩ | λx.t

Γ, x : σ ⊢ x : σ Γ ⊢ r : R Γ ⊢ φ : R → · · · → R︸ ︷︷ ︸
n

→ R

Γ ⊢ t1 : σ1 Γ ⊢ t2 : σ2

Γ ⊢ ⟨t1, t2⟩ : σ1 × σ2

Γ ⊢ t : σ1 × σ2

Γ ⊢ out1 t : σ1

Γ ⊢ t : σ1 × σ2

Γ ⊢ out2 t : σ2

Γ, x : σ ⊢ t : τ

Γ ⊢ λx.t : σ → τ
Γ ⊢ t : σ → τ Γ ⊢ s : σ

Γ ⊢ ts : τ

Figure 1: Syntax and Statics of STR

subscripts when types are not relevant). As customary, we refer to closed
terms as programs.

We endow STR with a call-by-value dynamic semantics defined the reduc-
tion rules in Figure 2, where for a function φ : Rn → R and a number r ∈ R
we write φr : Rn−1 → R for the mapping (r1, . . . , rn−1) 7→ φ(r, r1, . . . , rn−1).
Notice, in particular, that φr1 · · · rn eventually reduces to φ(r1, . . . , rn).
Since STR is simply-typed, a standard reducibility proof (Girard et al., 1989)
shows that STR is strongly normalizing. In particular, any program t evalu-
ates to a (unique) closed value v — that we indicate as nf(t) — in a finite
number of reduction steps (notation t ⇓ v). We write t ⇓n v, for n ∈ N, to
state that t evaluates to v in n reduction steps. As it is customary, we denote
by →∗ the reflexive and transitive closure of →.

2.1. Program Equivalence and Program Distance: an Overview

Despite its simplicity, STR allows us to justify the shift from program
equivalence — that is, the family of notions concerning equality between
programs — to program distance.

First, let us define a suitable notion of program equivalence for STR pro-
grams. Due to its simple nature, program equivalence for STR terms can be
defined by means of several notions of program equivalence, ranging from

5

(λx.t)v → t[v/x] φr → φr outi ⟨v1, v2⟩ → vi
t → t′

ts → t′s

s → s′

vs → vs′
t → t′

⟨t, s⟩ → ⟨t′, s⟩
s → s′

⟨v, s⟩ → ⟨v, s′⟩
t → t′

outi t → outi t
′

Figure 2: Dynamics of STR

denotationally-based to operationally-based equivalences. Here, we choose
extensional or applicative equivalence.2

Definition 1. Define the type-indexed family of relations (∼=Λ

σ ⊆ Λ•
σ×Λ•

σ,
∼=V

σ ⊆
V•
σ × V•

σ)σ as follows (where i ∈ {1, 2}):

t ∼=Λ

σ t′ ⇐⇒ nf(t) ∼=V
σ nf(t′)

⟨v1, v2⟩ ∼=V
σ1×σ2

⟨w1, w2⟩ ⇐⇒ ∀i. vi ∼=V
σi
wi

r ∼=V
R r′ ⇐⇒ r = r′

v ∼=V
σ→τ v′ ⇐⇒ ∀w ∈ V•

σ. vw
∼=Λ

τ v′w.

As usual, we omit type subscripts when not relevant.

It is well-known that extensional equivalence is a congruence, and thus a
compositional technique for reasoning about program behaviors. In partic-
ular, if t ∼= s, then C[t] ∼= C[s] holds for any context C (of the right type).
Unfortunately, one soon realizes that due to the presence of (constants for)
real-numbers, program equivalence is a too coarse notion for reasoning about
STR programs. For it is desirable to regard two programs of type R whose
outputs are ε apart to be themselves ε apart, rather than just state that
the two are not equivalent.3 The natural way to overcome this problem is

2This is nothing but a simplification of Abramsky’s applicative bisimilarity (Abramsky,
1990) that takes advantage of the simple type system of STR.

3A similar argument can be formulated for any language exhibiting, either in its syntax
or in its semantics, some quantitative behavior. Typical examples of such behaviors are
given by types for quantitative objects, such as numeric types, but also by probabilistic
primitives, the latter giving a quantitative flavor to standard semantical notions (such
as termination) (Chatzikokolakis et al., 2014; de Amorim et al., 2017; Desharnais et al.,
2004; Du et al., 2016; Gebler et al., 2016; Reed and Pierce, 2010; Van Breugel and Worrell,
2005).

6

to refine ∼=σ into a map δσ : Λ•
σ × Λ•

σ → R following Lawvere’s correspon-
dence between ordered sets and (generalized) metric spaces (Lawvere, 1973).
Accordingly, we obtain the following maps:

δV
R (r, r

′) ≜ r′ − r

δV
σ1×σ2

(⟨v1, v2⟩, ⟨w1, w2⟩) ≜ max
i∈{1,2}

δV
σi
(vi, wi)

δΛ

σ(t, t
′) ≜ δV

σ(nf(t), nf(t
′))

δV
σ→τ (v, v

′) ≜ sup
w∈V•

σ

δΛ

τ (vw, v
′w)

which can be easily proved to be generalized metrics4 (Lawvere, 1973). To
make δ a useful notion for reasoning about the (quantitative) behavior of
programs, we need it to support the (quantitative refinement of the) compo-
sitionality principle ensured by ∼=. As compositionality of ∼= takes the form
of a congruence property, it is easy to realize to that compositionality of δ
takes the form of non-expansiveness : for all terms s, s′ ∈ Λ•

σ and x : σ ⊢ t : τ
we must have δσ(s, s

′) ≥ δτ (t[s/x], t[s
′/x]). That is, contexts do not amplify

distances.
Unfortunately, we immediately see that δ fails to be non-expansive, and

thus compositional. Even worse, any reasonable non-expansive metric-like
map trivializes, meaning that it collapses to a congruence relation. Roughly,
given two terms t, s which are ε > 0 apart, for any real number c ≥ 1 it is
always possible to find a context C such that C[t] and C[s] are c · ε apart.
For it is sufficient to take a term t using its input x enough times : once the
terms C[t] and C[s] are evaluated, any time t uses x the distance between s
and s′ is detected and added to the one previously measured. Remarkably,
this holds even if any map φ in the language of STR is non-expansive (i.e.
1-Lipschitz).

2.2. Differential Logical Relations

The failure of non-expansiveness of quantitative refinements of notions of
program equivalence has led researchers to propose several notions of program
distance (Crubillé and Dal Lago, 2017; Reed and Pierce, 2010; Gavazzo,

4Additionally, by replacing r′− r and supr1,...,rn ψ(r1, . . . , rn)−φ(r1, . . . , rn) with |r′−
r| and supr1,...,rn |ψ(r1, . . . , rn) − φ(r1, . . . , rn)|, respectively, δσ becomes a pseudometric
(Steen and J. Arthur Seebach, 1995).

7

2018) aiming to restore compositionality. All the notions proposed share
a common feature: they all impose calculi linearity constraints, this way
providing static information on the number of times a program can use its
input (and thus on how much the program can amplify distances). The
notions of program distance thus obtained are indeed compositional, but
still have two major drawbacks. First, they are tailored to linear calculi
and are not very informative when applied to non-linear calculi via, e.g.,
standard translations (Girard, 1987). Second, and most important, they do
not account for the role of the environment in determining distances. Let
us expand on this last point by means of an example. Consider the (linear)
programs t ≜ λx.x and s ≜ λx.sin x for the identity and sine function,
respectively. It is easy to see that measuring the distance between t and s as
we did when defining δ, we are forced to conclude such a distance to be ∞.
In fact, for r → ∞ we have |r − sin(r)| → ∞. This is rather unsatisfactory,
as such distance does not take into account which input the environment
will actually pass to t and s. For instance, if the environment feeds t and s
with an input v close to zero, then the distance between tv and sv should be
close to 0 too, and thus we would like to conclude that in all such cases the
distance between t and s is itself close to zero.

Summing up, ordinary notions of program distance are not sensitive to
the context in which programs are used. This ultimately relies on the fact
that measuring the distance between two programs (regarded as functions)
as just one single number there is no way to give information on how such
programs interact with the environments in which they are used. Differen-
tial logical relations (Dal Lago et al., 2019) have been introduced as a way to
define a context-sensitive notion of program distance on non-linear calculi.
The main novelty of differential logical relations (which was previously theo-
rized by Westbrook and Chaudhuri (Westbrook and Chaudhuri, 2013) in the
setting of approximate program transformations (Misailovic et al., 2011)) is
to consider richer notions of distance (also called differences) between pro-
grams, whereby the difference between two programs is, in general, not a
number, but a function describing how differences between inputs turn into
differences between outputs.

Differential logical relations take the form of (type-indexed) ternary rela-
tions Dσ relating pairs of programs together with differences between them.
When dealing with programs of type σ → τ , differences take the form of
functions mapping input programs of type σ and differences for such pro-
grams to differences for programs of type τ . This is why here we consider

8

a computationally-oriented notion of difference whereby differences between
programs are defined as programs themselves (Westbrook and Chaudhuri,
2013) rather than as semantical objects.

We formalize these ideas by assigning to each type σ a type ∆σ whose
inhabitants are terms acting as differences between terms of type σ.

Definition 2. The map ∆ associates to each type σ a type ∆σ which we
refer to as the type of σ-differences. We define ∆ recursively as follows.

∆R ≜ R; ∆(σ × τ) ≜ ∆σ ×∆τ ; ∆(σ → τ) ≜ σ → ∆σ → ∆τ.

Notice, in particular, that a difference between two programs of type σ → τ
is a program taking an input of type σ and a σ-difference, and returning a
τ -difference.

Obviously, given two programs t, t′ of type σ, not all programs of type
∆σ can act as (meaningful) differences between t and t′. Differential logical
relations (DLRs for short) are ternary relations specifically designed to isolate
meaningful differences between programs. More precisely, a DLR is a type-
indexed family of ternary relations D ≜ (DΛ

σ,D
V
σ)σ, where D

Λ
σ ⊆ Λ•

∆σ×Λ•
σ×Λ•

σ

and DV
σ ⊆ V•

∆σ × V•
σ × V•

σ, such that DΛ
σ(dt, t, t

′) holds if and only if dt is a
difference5 between t and t′ (and similarly for values).

Definition 3 (Asymmetric DLRs). A differential logical relation is a type-
indexed family of (pairs of) ternary relations (DΛ

σ ⊆ Λ•
∆σ × Λ•

σ × Λ•
σ,D

V
σ ⊆

V•
∆σ × V•

σ × V•
σ)σ such that:

• DV
R (dr, r, r

′) if and only if r′ − r = dr.

• DV
σ1×σ2

(⟨dv1, dv2⟩, ⟨v1, v2⟩, ⟨v′1, v′2⟩) if and only if DV
σi
(dvi, vi, v

′
i), for any

i ∈ {1, 2}.

• DV
σ→τ (dv, v, v

′) if and only if for all dw,w,w′, if DV
σ(dw,w,w

′) then
DΛ

τ (dvw dw, vw, v′w′).

• DΛ
σ(dt, t, t

′) if and only if DV
σ(dv, v, v

′), where dt ⇓ dv, t ⇓ v, t′ ⇓ v′.

5Following conventions in, e.g., (Cai et al., 2014), we use the notation dt, ds, . . . (resp.
dv, dw, . . .) for terms (resp. values) of type ∆σ. The reader, however, should keep in mind
that ∆σ is de facto an ordinary type, and thus dt, . . . are just ordinary terms (and values).
Thus, for instance, ∆(R → R) is nothing but R → R → R and a closed value dv : ∆(R → R)
is just an ordinary λ-abstraction of type R → R → R.

9

Remark 4. Contrary to the original formulation of DLRs (Dal Lago et al.,
2019), here we work with asymmetric DLRs: if dt is a difference between t
and t′, then dt may not be a difference between t′ and t. For instance, 3 is a
difference between 2 and 5, as by adding 3 to 2 we reach 5. Yet, according
to such a reading, it is not true that 3 is a difference between 5 and 2 (the
desired difference being, in fact, −3).

Example 5 (Dal Lago et al. (2019)). Let t ≜ λx.sin x and t′ ≜ λx.x. Then
dt ≜ λx.λdx.x + dx − sin x is a difference between t and t′. For, proving
DV
R→R(dt, t, t

′) requires to prove that for all dr, r, r′ such that DV
R (dr, r, r

′)
(meaning that r+ dr = r′), we have DV

R (r + dr − sin r, sin r, r′), i.e. r+ dr−
sin r + sin r = r′, which is indeed the case. Observe how dt x ε evaluates to
a real number which is indeed small when the two arguments are themselves
close to 0.

As already remarked, DLRs have been introduced with the goal of devel-
oping a compositional theory of program distance. This goal is achieved by
the so-called Fundamental Lemma (Dal Lago et al., 2019).

Lemma 6 (Fundamental Lemma, Version 1). For any program t ∈ Λ•
σ there

exists a self-difference dt for it. That is, Dσ(dt, t, t).

Lemma 6 enables compositional reasoning on program differences. Infor-
mally, by regarding a context x : σ ⊢ t : τ as a term λx.t we are guaranteed a
self-difference dt for t to exist, so that given two programs s, s′ of type σ with
difference ds between them, one can compute the difference between t[s/x]
and t[s′/x] starting from s, ds, and dt alone.

2.3. The Incremental λ-calculus and Program Derivatives

Albeit enabling compositional reasoning on program differences, Lemma 6
has the major drawback of guaranteeing the existence of self-distances without
giving any explicit information on how to construct them. As we will see in
the next section, the self-distances of Lemma 6 are precisely the program
derivatives used in the incremental λ-calculus.

The incremental λ-calculus is a formalism introduced by Cai et al. (Cai
et al., 2014) as a foundational calculus for incremental computation (Rama-
lingam and Reps, 1993; Paige and Koenig, 1982). Suppose we are given a
program f regarded as a function, and an input a (think, for instance, of a
as a database). Let us also suppose to compute f(a) and then to modify the

10

input a by a change da, this way obtaining a new input a⊕ da (for instance,
we may add a new entry to the database a). Incremental computing seeks
for ways to obtain the result of f(a ⊕ da) without computing f on the new
input a ⊕ da from scratch. In fact, sometimes it is indeed possible to ob-
tain such a result in terms of f(a) and f ′(a, da), for a suitable function6 f ′.
For instance, let f(x) ≜ x2 and suppose we have computed f(a), for some
a. Let us now change a to a + da. When asked to compute f(a + da) we
can take advantage of having already computed f(a) = a2 by observing that
f(a+da) = a2+2ada+da2 = f(a)+f ′(a, da), where f ′(x, dx) ≜ 2xdx+dx2.

In order to provide a formal foundation for higher-order incremental com-
putation, Cai et al. (Cai et al., 2014) studied incrementalization of a simply-
typed λ-calculus similar to STR. More precisely, for any type σ a type of
σ-changes coinciding with ∆σ is introduced, as well as an operator ⊕ (called
change update) building an expression t⊕ dt ∈ Λσ from an expression t ∈ Λσ

and a change dt ∈ Λ∆σ. To account for incrementalization, the so-called
derivative7 Dt ∈ Λ∆σ of an expression t ∈ Λσ is also introduced and it
is shown that for all terms t ∈ Λ•

σ→τ , s ∈ Λ•
σ, and σ-change ds, one has

t (s ⊕ ds) ≡ (ts) ⊕ (Dtsds), where ≡ stands for denotational equality. All
the aforementioned results are proved by means of denotational semantics,
although some operationally-based proofs employing techniques resembling
DLRs are given in Giarrusso’s PhD thesis (Giarrusso, 2018).

In the next section, we will show how we can easily prove such results
using DLRs and, dually, how by identifying differences with changes we can
improve on the current theory of program differences. To do so, however,
we first need to formally introduce the update operator ⊕ and the notion of
a program derivative. We begin recalling a couple of basic definitions from
finite difference calculus (Richardson, 1954).

Definition 7. Given functions φ : Rn → R and dφ : (R × R)n → R, define

6Obviously, to be practically useful, the map f ′ should be such that computing f ′(a, da)
is more efficient than computing f(a⊕ da).

7The terminology is misleading. For instance, we should not think of the derivative Dφ
of a term φ : R → R as the syntactic counterpart of the derivative of φ : R → R. Rather,
Dφ represents the finite difference (Richardson, 1954) of φ, i.e. the map ∆φ : R×R → R
defined by ∆φ(x, dx) ≜ φ(x+ dx)− φ(x).

11

the maps φ⊕ dφ : Rn → R and ∆φ : (R× R)n → R by:

(φ⊕ dφ)(x1, . . . , xn) ≜ φ(x1, . . . , xn) + dφ((x1, 0), . . . , (xn, 0));

∆φ((x1, dx1), . . . , (xn, dxn)) ≜ φ(x1 + dx1, . . . , xn + dxn)− φ(x1, . . . , xn).

The map ∆φ is known as the finite difference of φ. For instance, the finite
difference of the sine function sin is the function ∆ sin defined by ∆ sin(x, y) =
sin(x+ y)− sin(x). Notice that φ⊕∆φ = φ.

Definition 8. Define the partial operator ⊕ : Λ → Λ → Λ as follows:

x⊕ dx ≜ x; (outi t)⊕ (outi dt) ≜ outi (t⊕ dt);

r ⊕ dr ≜ r + dr; (λx.t)⊕ (λx.λdx.dt) ≜ λx.(t⊕ dt);

φ⊕ dφ ≜ φ⊕ dφ; (ts)⊕ (dt sds) ≜ (t⊕ dt) (s⊕ ds).

⟨t, s⟩ ⊕ ⟨dt, ds⟩ ≜ ⟨t⊕ dt, s⊕ ds⟩;

where the symbol ⊕ in φ⊕ dφ is the one in Definition 7.

The definition of t⊕dt may appear weird at first, but it will become clear
once the notion of a derivative is introduced. Intuitively, given a term t and a
change dt, we can see t⊕ dt as the term obtained by changing t according to
dt. Clearly, this is possible only if dt has the ‘right’ structure (for instance, it
would be meaningless to do something like changing a function according to
a number). We immediately notice that if v is a value and v⊕ dv is defined,
then dv and v ⊕ dv are values too. Moreover, the following typing rule is
admissible, whenever t⊕ dt is defined:

Γ ⊢ t : σ dΓ,Γ ⊢ dt : ∆σ

Γ ⊢ t⊕ dt : σ

where for Γ = x1 : σ1, . . . , xn : σn, we have dΓ ≜ dx1 : ∆σ1, . . . , dxn : ∆σn.
Next, we define the notion of a derivative of a term.

Definition 9. The derivative Dt of a term t is thus defined:

Dx ≜ dx; Dr ≜ 0; D(ts) ≜ DtsDs.

Dφ ≜ ∆φ; D⟨t, s⟩ ≜ ⟨Dt,Ds⟩;
D(outi t) = outi Dt; D(λx.t) ≜ λx.λdx.Dt;

12

Observe that we can indeed think of Dt as the generalization of fi-
nite differences to arbitrary programs. For instance, we have D(λx.φ x) =
λx.λdx.∆φ x dx. In a similar fashion, we can compute the derivative of the
higher-order functionD(λf.λx.φ (f x)) as λf.λdf.λx.λdx.∆φ (f x) (df x dx).
Moreover, we easily see that if Γ ⊢ t : σ, then Γ, dΓ ⊢ Dt : ∆σ and that t⊕Dt
is defined and equal to t itself. For instance, we have:

(λx.φ x)⊕(λx.λdx.∆φ x dx) = λx.(φ x)⊕(∆φ x dx) = λx.(φ⊕∆φ) (x⊕dx)

which is nothing by λx.φ x.

3. Bridging the Gap

In this section, we relate DLRs with the incremental λ-calculus we have
introduced in the previous section. We do so by acting on two orthogonal
axes. On the one hand, we show that program derivatives are precisely the
self-distances of Lemma 6. That is, for any program t, Dt is a self-distance
for t. This result allows us to strengthen the fundamental lemma of DLRs
(Lemma 6), as now self-differences can be effectively computed. On the
other hand, we prove by means of DLRs a major result on the incremental λ-
calculus, namely soundness of differentiation (Cai et al., 2014). To the best of
the authors’ knowledge, all proofs of such a result rely on either denotational
semantics or logical relations tailored for such purpose (see Remark 15).

Let us begin proving that derivatives are actually self-differences. In
order to achieve such a result, we have to first extend the notion of a DLR to
open terms (Dal Lago et al., 2019). Given an environment Γ, we denote by
S(Γ) the collection of Γ-substitutions, i.e. the collection of maps ρ mapping
variables (x : σ) ∈ Γ to closed values ρ(x) ∈ V•

σ. In particular, we use the
notation dρ to denote substitutions in S(dΓ).

Definition 10. We extend the notion of a DLR to substitutions over an envi-
ronment Γ as follows: DΓ(dρ, ρ, ρ

′) ⇐⇒ ∀(x : σ) ∈ Γ. DV
σ(dρ(dx), ρ(x), ρ

′(x)),
where ρ, ρ′ ∈ S(Γ) and dρ ∈ S(dΓ).

As it is customary, we write t[ρ] for the application of the substitution ρ
to the term t, and ρ[x 7→ v] for the substitution mapping x to v and behaving
as ρ otherwise. Before proving our refinement of Lemma 6, let us observe
that DLRs are closed under reduction, in the following sense.

13

Lemma 11. The following holds for all closed terms:

DΛ

σ(dt, t, t
′) ∧ t →∗ s ∧ t′ →∗ s′ =⇒ DΛ

σ(dt, s, s
′);

DΛ

σ(ds, s, s
′) ∧ t →∗ s ∧ t′ →∗ s′ =⇒ DΛ

σ(ds, t, t
′).

We are now ready to prove our new version of the Fundamental Lemma.

Lemma 12 (Fundamental Lemma, Version 2). For any program t ∈ Λ•
σ we

have Dσ(Dt, t, t).

Proof. The thesis follows from the stronger statement: for any term Γ ⊢ t : σ
and value Γ ⊢ v : σ we have

∀dρ, ρ, ρ′. DΓ(dρ, ρ, ρ
′) =⇒ DV

σ(Dv[ρ, dρ], v[ρ], v[ρ′])∧DΛ

σ(Dt[ρ, dρ], t[ρ], t[ρ′]).

The proof of the latter is a routine induction on t and v. We show a couple
of cases as illustrative examples.

• Consider the case of real-valued maps φ : Rn → R. We have to show
that for all values ri, r

′
i, dri such that DV

R (dri.ri, r
′
i) we have

DΛ

R(∆φ ⟨r1, dr1⟩ · · · ⟨rn, drn⟩, φ r1 · · · rn, φ r′1 · · · r′n)

i.e.

φ(r′1, . . . , r
′
n)− φ(r1, . . . , rn) = ∆φ((r1, dr1), . . . , (rn, drn))

We are done since DV
R (dri.ri, r

′
i) implies r′ = ri + dri, and

∆φ((r1, dr1), . . . , (rn, drn)) = φ(r1 + dr1, . . . , rn + drn)− φ(r1, . . . , rn).

• Consider the case of abstractions λx.t. Assume DV
Γ(dρ, ρ, ρ

′). We have
to show

DV
σ→τ (λx.λdx.Dt[ρ, dρ], λx.t[ρ], λx.t[ρ′])

i.e.
DΛ

τ ((λx.λdx.Dt[ρ, dρ]) v dv, (λx.t[ρ])v, (λx.t[ρ′])v′)

for all dv, v, v′ such that DV
σ(dv, v, v

′). By Lemma 11, it is sufficient to
show

DΛ

τ (Dt[ν, dν], t[ν], t[ν ′])

where ν ≜ ρ[x 7→ v], ν ′ ≜ ρ′[x 7→ v′], dν ≜ dρ[x 7→ dv], which indeed
holds by induction hypothesis.

14

Notice how Lemma 12 improves the compositionality principle of DLRs.
Given a term x : σ ⊢ t : τ and two values ⊢ v, v′ : σ such that DV

σ(dv, v, v
′) the

impact of replacing v with v′ in t can be computed as Dt[v/x, dv/dx]. Next,
we show how the incremental λ-calculus can benefit from DLRs by showing
how the latter support an easy proof of soundness of differentiation.

Theorem 13 (Soundness of Differentiation (Cai et al., 2014; Giarrusso et al.,
2019)). For all t ∈ Λ•

σ→τ and values v, v′, dv such that DV
σ(dv, v, v

′), we have
tv′ ∼= (tv)⊕ (Dtv dv).

Our proof of Theorem 13 is based on the following result which states
that changes indeed behave as such. Recall that ∼= extends to open terms
by stipulating that for Γ ⊢ t, t′ : σ we have t ∼=Λ

σ t′ iff t[ρ] ∼=Λ

σ t′[ρ], for any
substitution ρ ∈ S(Γ) (and similarly for values).

Proposition 14. The following holds for all (possibly open) terms t, t′, dt
and values v, v′, dv such that t⊕ dt and v ⊕ dv is defined.

DΛ

σ(dt, t, t
′) =⇒ t′ ∼= t⊕ dt; DV

σ(dv, v, v
′) =⇒ v′ ∼= v ⊕ dv.

Proof. The proof is by induction on σ, the relevant case being the one of
values. We show how to handle the case for arrow types. Assume Γ ⊢
t, t′ : σ → τ . We have to show that for any ρ ∈ S(Γ), t′[ρ] ∼= (t ⊕ dt)[ρ].
First, observe that we have the following general result (by induction on t),
where (Dρ)(dx) ≜ Dρ(x): (t ⊕ dt)[ρ] = t[ρ] ⊕ dt[ρ,Dρ]. By Lemma 12, we
have DΓ(Dρ, ρ, ρ), hence DV

σ→τ (dt[ρ,Dρ], t[ρ], t′[ρ]). In particular, we must
have t[ρ] = λx.s, t′[ρ] = λx.s′, and dt[ρ,Dρ] = λx.λdx.ds, for some s, s′,
and ds. Since (λx.s) ⊕ (λx.λdx.ds) = λx.(s ⊕ ds) (notice that this term is
indeed defined, as it is obtained from t⊕ dt, which is defined by hypothesis,
replacing variables y, dy with closed values v, Dv), in order to prove the
thesis we have to show s′[v/x] ∼= (s⊕ ds)[v/x] for any closed value v of type
σ. Since (s ⊕ ds)[v/x] = s[v/x] ⊕ ds[v/x,Dv/dx] we obtain the thesis from
DV

σ→τ (dt[ρ,Dρ], t[ρ], t′[ρ]) and DV
σ(Dv, v, v), the latter being a consequence of

Lemma 12.

We can finally prove soundness of differentiation.

Proof of Theorem 13. Assume DV
σ(dv, v, v

′). From Lemma 12, we obtain
Dσ→τ (Dt, t, t), and thus Dτ (Dtsds, ts, ts′), by Lemma 11. We conclude that
tv′ ∼= (tv)⊕ (Dtv dv) from Proposition 14.

15

Remark 15. To the best of the authors’ knowledge, all proofs of Theorem 13
in the literature are based on either denotational semantics or on logical
relations resembling DLRs, but specifically extended with a clause requiring
t ⊕ dt = t′ for all related terms dt, t, t′, at any type (Giarrusso et al., 2019;
Giarrusso, 2018). Notice the use of syntactic equality: the reason behind
such a choice is that the logical relation obtained is meant to relate only
programs with their derivative (in which case we indeed have t ⊕ Dt = t),
rather than as a tool to reason about program differences.

4. Language Extensions

STR is a minimal language which serves as a vehicle to study program dif-
ferences. However, not so many interesting programs can be written in STR,
and thus one may wonder whether our techniques scale to richer languages.
In Section 5, we will show that differential logical relations can be extended to
languages with full recursion. Here, we show by means of examples that our
framework is robust with respect to language extensions given in the form of
new data types. More specifically, we show how to extend differential logical
relations to sum and list types. First, we extend the syntax of STR with the
new types and term constructs. This is done in Figure 3.
We also extend the dynamic semantics of STR accordingly (Figure 4).

To extend the results of the previous section to STR with sum and list
types, what we have to do is to first define suitable difference spaces for
such types, and then to extend DLRs accordingly. A standard notion of
a difference space for sum types (Giarrusso, 2018) is given by ∆(σ + τ) ≜
∆σ + ∆τ + σ + τ. The rationale behind this definition is that whenever we
compare elements of type σ + τ we either compare elements coming from
the same type (viz. σ or τ) or we compare elements coming from different
types (e.g. σ for the first element and τ for the second one). In the first
case, a difference is a just a difference between the original terms (thus either
an element of ∆σ or an element of ∆τ). In the second case, instead, we
should compare terms coming from different types, something not possible
in our framework: we thus simply take as a difference the second term, this
way witnessing that we have a ‘jump’ from one type to another (so that a
difference tells that we have such a jump and the target term of the jump).
More precisely, let v, v′ be values of type σ+τ and dv be a difference between
them. Then, we have four possible cases:

16

σ, τ ::= . . . | σ + τ | [σ]

v, w ::= . . . | in1 v | in2 v | nil | v :: v

t, s ::= . . . | in1 t | in2 t | case t of (x1 ⇒ t | x2 ⇒ t) | t :: t

| case t of (nil ⇒ t | xhd :: xtl ⇒ t)

Γ ⊢ t : σ
Γ ⊢ in1 t : σ1 + σ2

Γ ⊢ t : σ2

Γ ⊢ in2 t : σ1 + σ2

Γ ⊢ thd : σ Γ ⊢ ttl : [σ]

Γ ⊢ thd :: ttl : [σ]

Γ ⊢ t : σ1 + σ2 Γ, x1 : σ1 ⊢ t1 : τ Γ, x2 : σ2 ⊢ s2 : τ

Γ ⊢ case t of (x1 ⇒ s1 | x2 ⇒ s2) : τ

Γ ⊢ nil : [σ]

Γ ⊢ t : [σ] Γ ⊢ snil : τ Γ, xhd : σ, xtl : [σ] ⊢ scons : τ

Γ ⊢ case t of (nil ⇒ snil | xhd :: xtl ⇒ scons) : τ

Figure 3: Syntax of STR with sums and lists.

t → t′ i ∈ {1, 2}
ini t → ini t

′
i ∈ {1, 2}

case (ini v) of (x1 ⇒ s1 | x2 ⇒ s2) → si[v/xi]

t → t′

case t of (x1 ⇒ s1 | x2 ⇒ s2) → case t′ of (x1 ⇒ s1 | x2 ⇒ s2)

thd → t′hd
thd :: ttl → t′hd :: ttl

ttl → t′tl
vhd :: ttl → vhd :: t′tl

case nil of (nil ⇒ snil | xhd :: xtl ⇒ scons) → snil

case vhd :: vtl of (nil ⇒ snil | xhd :: xtl ⇒ scons) → scons [vhd/xhd , vtl/xtl]

t → t′

case t of (nil ⇒ snil | xhd :: xtl ⇒ scons) → case t′ of (nil ⇒ snil | xhd :: xtl ⇒ scons)

Figure 4: Dynamics of STR with sum and list types

17

• Both v and v′ come from the type σ (i.e. v = in1 (w) and v′ = in1 (w
′)).

In that case, dv will be an element of ∆σ (injected into ∆(σ+τ)) acting
as a difference between w and w′.

• Both v and v′ come from the type τ . As before, in this case dv will be
an element of dτ acting as a difference between w and w′.

• v = in1 (w) comes from the type σ and v′ = in2 (w′) from τ , so that
we have a ‘jump’ from σ to τ . In that case, dv is just w′ (injected into
∆(σ + τ), and witnesses that we have ‘jumped’ from σ to τ .

• v = in1 (w) comes from the type σ and v′ = in2 (w
′) from τ , so that we

have a ‘jump’ from σ to τ . As before, in this case dv is just w′ (injected
into ∆(σ + τ), and witnesses that we have ‘jumped’ from τ to σ.

For list types, things are simpler since we may take as difference space
just lists of differences. Formally: ∆[σ] ≜ [∆σ]. Before extending differential
logical relations, it is useful to introduce some syntactic sugar.

Remark 16. Due to the form of ∆(σ + τ), it is convenient to introduce
the following syntactic sugar for nested (with depth two) injection and case
analysis on sum types: that allows us to inject and do pattern matching over
4-ary sums.

Γ ⊢ t : σi

Γ ⊢ ini t : σ1 + σ2 + σ3 + σ4
i ∈ {1, 2, 3, 4}

Γ ⊢ t : σ1 + σ2 + σ3 + σ4 Γ, xi : σi ⊢ si : τ

Γ ⊢ case t of (x1 ⇒ s1 | x2 ⇒ s2 | x3 ⇒ s3 | x4 ⇒ s4) : τ
i ∈ {1, . . . , 4}

We are now ready to extend DLRs.

Definition 17. We extend Definition 3 with the following clauses.

• DV
σ1+σ2

(dv, v, v′) if and only if the following holds:

(v = in1 w) ∧ (v′ = in1 (w′)) =⇒ (dv = in1 dw) ∧ DV
σ1
(dw,w,w′);

(v = in2 w) ∧ (v′ = in2 (w′)) =⇒ (dv = in2 dw) ∧ DV
σ2
(dw,w,w′);

(v = in1 w) ∧ (v′ = in2 (w′)) =⇒ (dv = in4 w′);

(v = in2 w) ∧ (v′ = in1 (w′)) =⇒ (dv = in3 w′).

18

• DV
[σ](dv, v, v

′) if and only either v = v′ = dv = nil or v = vhd :: vtl , v
′ =

v′hd :: v′tl , dv = dvhd :: dvtl , and DV
σ(dvhd , vhd , v

′
hd) and DV

[σ](dvtl , vtl , v
′
tl).

To extend Lemma 12 to Definition 17, we need to extend the notion of
a derivative to our new type constructors. To do so, we introduce some
syntactic sugar which will improve readability. Given lists t, s, we write

case t, s of ((nil , nil) ⇒ rnil | (xhd :: xtl , yhd :: ytl ⇒ rcons) for the nested
case analysis on t and s returning a dummy value for those cases not listed
in the pattern matching (such a syntax will be used only for terms related by
differential logical relations, this way ensuring the incomplete case analysis
of our syntax to be indeed exhaustive). We use a similar syntax for nested
case analysis on sum types.

Definition 18. We extend Definition 9 with the following clauses:

D(ini t) ≜ ini Dt;

D(thd :: ttl) ≜ Dthd :: Dttl ;

D(case t of (x1 ⇒ s1 | x2 ⇒ s2)) ≜

case t,Dt of
x1, dx1 ⇒ Ds1

| x2, dx2 ⇒ Ds2

| x1, x4 ⇒ s2[x4/x2]

| x2, x3 ⇒ s1[x3/x1]

 ;

D

 case t of
nil ⇒ snil

| xhd :: xtl ⇒ scons

 ≜

 case t,Dt of
(nil , nil) ⇒ Dsnil

| (xhd :: xtl , dxhd :: dxtl) ⇒ Dscons

 .

We now have all the ingredients to extend the Fundamental Lemma
(Lemma 12) to sum and list types.

Lemma 19 (Fundamental Lemma, Version 3). For any program t ∈ Λ•
σ we

have Dσ(Dt, t, t).

The proof of Lemma 19 is a straightforward extension of the one of
Lemma 12. Notice how the incomplete case analysis of the derivative of
the pattern matching constructs for sums and lists perfectly matches the one
in Definition 17.

We have thus achieved the desired extension of DLRs (and their meta-
theory) to list and sum types. Moreover, the exact same methodology we

19

have used here can be used to extend DLRs to richer languages. However, so
far we have focused on theoretical aspects of DLRs giving little attention on
how they can be used in practice. Can we apply derivatives and differential
logical relations to perform differential analysis of interesting higher-order
programs? Consider, for instance, the higher-order function map : (σ →
τ) → [σ] → [τ] obeying the laws

map (λx.t) nil → nil

map (λx.t) (vhd :: vtl) → t[vhd/x] :: (map (λx.t) vtl).

Can we define the derivative Dmap, this way giving (by Lemma 19) a self-
difference formap? We answer this question affirmatively in the next section,
where we extend differential logical relations to full recursion.

5. Differential Logical Relations in Presence of Recursion via Step-
indexing

The connection between DLRs and the incremental λ-calculus of previous
sections can also be used as the starting point towards an extension of DLRs
beyond the simply-typed setting of previous sections, this way generalizing
Lemma 12 to Turing complete calculi. In this section, we show how to achieve
such a goal for an extension of STR, which we call PCFR, with a fixed point
combinator. To handle full recursion, we refine DLRs using the so-called step-
indexing technique (Appel and McAllester, 2001; Ahmed, 2006). A similar
technique has been recently proposed for an untyped incremental λ-calculus
(Giarrusso et al., 2019).

The syntax and static semantics of PCFR are obtained by extending the
one of STR with a fixed point operator fix(f, x).t.

v, w ::= . . . | fix(f, x).t

We extend the notational conventions used for STR to PCFR mutatis mutandis.
The static and dynamic semantics of PCFR are given by extending the one
of STR with the rules in Figure 5. Notice also that we can ignore the λ-
abstraction constructor and encode terms of the form λx.t as fix(f, x).t where
f does not appear (free) in t. We extend the notations t ⇓ v and t ⇓n v
to PCFR in the obvious way. All this is standard, and does not pose any
significant problem.

To extend DLRs to PCFR, we need to handle possibly infinitary behaviors.
We do so relying on step-indexing (Appel and McAllester, 2001).

20

Γ, f : σ → τ, x : σ ⊢ t : τ

Γ ⊢ fix(f, x).t : σ → τ (fix(f, x).t)v → t[v/x,fix(f, x).t/f]

Figure 5: Statics and Dynamics of PCFR

Definition 20 (Step-indexed Asymmetric DLRs). A step-indexed DLR con-
sists of a family of type-indexed (pairs of) relations DV

σ ⊆ N × V•
∆σ × V•

σ ×
V•
σ; ,D

Λ
σ ⊆ N× Λ•

∆σ × Λ•
σ × Λ•

σ; such that:

• DV
R (n, dr, r, r

′) if and only if r + dr = r′.

• DV
σ1×σ2

(n, ⟨dv1, dv2⟩, ⟨v1, v2⟩, ⟨v′1, v′2⟩) if and only if DV
σi
(n, dvi, vi, v

′
i), for

any i ∈ {1, 2}.

• DV
σ→τ (n, ds,fix(f, x).t,fix(f, x).t

′) if and only if for all k, v, v′, dv, we
have:

DV
σ(k, dv, v, v

′)∧k < n =⇒ DΛ

τ (k, ds v dv, (fix(f, x).t)v, (fix(f, x).t
′)v′).

• DΛ
σ(n, dt, t, t

′) if and only if ∀k < n. t ⇓k v ∧ t′ ⇓ v′ implies dt ⇓
dv ∧ DV

σ(n− k, dv, v, v′).

Definition 20 is not conceptually far from the original definition of DLRs.
Its main novelty is the introduction of a new parameter (the natural number n
in its defining clauses) which behaves as a standard step-index in ordinary log-
ical relations. Notice that we can also straightforwardly refine Definition 17
with the step-index parameter. For instance, we have DV

σ1+σ2
(n, dv, v, v′) if

and only if the following holds:

v = in1 w ∧ v′ = in1 (w′) =⇒ dv = in1 dw ∧ DV
σ1
(n, dw,w,w′);

v = in2 w ∧ v′ = in2 (w′) =⇒ dv = in2 dw ∧ DV
σ2
(n, dw,w,w′);

v = in1 w ∧ v′ = in2 (w′) =⇒ dv = in4 w′;

v = in2 w ∧ v′ = in1 (w′) =⇒ dv = in3 w′.

To prove the PCFR counterpart of Lemma 12, we need to extend the notion
of a derivative to PCFR terms. In order to improve the understanding and
readability of our results, it is convenient to introduce some syntactic sugar
in the form of a term fix(df, dx, f, x).dt whose dynamics is the following

(fix(df, dx, f, x).dt) v dv →∗ dt[fix(df, dx, f, x).dt/df,fix(f, x).t/f, dv/dx, v/x]

21

and which can be easily constructed via nested fix. We are now ready to
define PCFR derivatives.

Definition 21. The derivative Dt of a PCFR term t is defined by extending
Definition 9 (resp. Definition 18) with the following clause:

D(fix(f, x).t) ≜ fix(df, dx, f, x).Dt.

The rationale behind the definition of D(fix(f, x).t) is as follows (Arntze-
nius, 2017; Alvarez-Picallo et al., 2019). Given a function f : X → X, let
µf be its (least) fixed point, so that µf = f(µf). As a consequence, by
the very definition of the derivative of an application, we have: D(µf) =
D(f(µf)) = (Df(µf))(D(µf)). Therefore, D(µf) is a fixed point of the
map x 7→ (Df(µf))(x), and thus we can stipulate D(µf) ≜ µ((Df)(µf)).
This way, obtain the desired result:

D(µf) = µ((Df)(µf)) = ((Df)(µf))(µ((Df)(µf))) = ((Df)(µf))(D(µf)).

The last piece we need in order to prove the extension of Lemma 12 to
PCFR is the extension of step-indexed DLRs to substitution maps:

Definition 22. We extend the notion of a step-indexed DLR to substitu-
tions over an environment Γ as follows: DΓ(n, dρ), ρ, ρ

′) ⇐⇒ ∀(x : σ) ∈
Γ. DV

σ(n, dρ(dx), ρ(x), ρ
′(x)), where ρ, ρ′ ∈ S(Γ) and dρ ∈ S(∆Γ).

We are finally ready to extend Lemma 12 to PCFR.

Lemma 23 (Fundamental Lemma, Version 4). For any term Γ ⊢ t : σ and
value Γ ⊢ v : σ:

DΓ(n, dρ, ρ, ρ
′) =⇒ DV

σ(n,Dv[ρ, dρ], v[ρ], v[ρ′]) ∧ DΛ

σ(n,Dt[ρ, dρ], t[ρ], t[ρ′]),

for all dρ, ρ, ρ′ and for any n ≥ 0.

Proof sketch. The proof is by induction on n, t, and v, mimicking the one of
Lemma 12 and using the following standard results:

∀dρ, ρ, ρ′. ∀n.DΓ(n, dρ, ρ, ρ
′) =⇒ ∀k ≤ n. DΓ(k, dρ, ρ, ρ

′);

∀dt, t, t′ ∈ Λ•
σ. ∀n.DΛ

σ(n, dt, t, t
′) =⇒ ∀k ≤ n. DΛ

σ(k, dt, t, t
′);

∀dv, v, v′ ∈ V•
σ. ∀n.DV

σ(n, dv, v, v
′) =⇒ ∀k ≤ n. DV

σ(k, dv, v, v
′).

22

Let us now come back to the example of the higher-order combinator
map. First, let us define map formally:

map = fix(m, f).λℓ.case ℓ of (nil ⇒ nil | xhd :: xtl ⇒ f xhd :: m f xtl)

where m : (σ → τ) → [σ] → [τ] and f : σ → τ . We can now compute
Dmap, obtaining:

fix(dm, df,m, f).λℓ.λdℓ.
case ℓ, dℓ of

(nil , nil) ⇒ nil

| (xhd :: xtl , dxhd :: dxtl) ⇒ df xhd dxhd :: dm f df xtl dxtl .

Notice that in the same way as map obeys the laws map (λx.t) nil →
nil and map (λx.t) (vhd :: vtl) → t[vhd/x] :: (map (λx.t) vtl), we have
Dmap (λx.t) (λx.λdx.Dt)nil nil → nil and

Dmap (λx.t) (λx.λdx.Dt) (vhd :: vtl) (Dvhd :: Dvtl)

→ Dt[vhd/x,Dvhd/dx] :: Dmap (λx.t) (λx.λdx.Dt) vtl Dvtl .

The Fundamental Lemma (Lemma 23) ensures that Dmap is indeed a self-
difference of map, and thus provides a way to perform a differential (and
context-sensitive) analysis of map.

6. Related Work

Differential logical relations have been introduced by the authors and
Yoshimizu (Dal Lago et al., 2019), building over intuitions by Westbrook
and Chaudhuri (Westbrook and Chaudhuri, 2013), and are currently under
investigation. Differently from the one considered in this work, the first for-
mulation of differential logical relations (Dal Lago et al., 2019) is symmetric
and considers semantical difference spaces, so that differences between pro-
grams are semantical objects (such as numbers and functions), rather than
programs themselves. Whereas we have found that working with asymmet-
ric DLRs makes proofs clearer (besides, asymmetry is in line with Lawvere’s
analysis of the notion of a distance (Lawvere, 1973)), working with syntactic
difference spaces does not really affect our results. In fact, we could consider
semantic-based difference spaces and show that the denotation of a deriva-
tive of a program is a self-difference for the program. This, however, would

23

uselessly complicate the exposition of our results, as we should have to go
throw the denotational semantics of both STR and PCFR.

The incremental λ-calculus has been introduced by Cai et al. (Cai et al.,
2014) as a simply-typed calculus, and by Giarrusso et al. (Giarrusso et al.,
2019) as an untyped calculus. The former work introduces the notions of
a program derivative and change update, and gives a denotational proof of
soundness of differentiation. Operationally-based proofs of the same result
are given in Giarrusso PhD’s thesis (Giarrusso et al., 2019; Giarrusso, 2018)
by means of logical relations (see Remark 15). Remarkably, both Giarrusso’s
thesis (Giarrusso, 2018) and the work by Giarrusso et al. (Giarrusso et al.,
2019) use ternary logical relations nearly identical to differential logical rela-
tions to relate programs with changes between them. Moreover, the logical
relations introduced in the aforementioned papers have been mechanized in
CoQ. The authors believe it is important to stress how essentially the same
technique has independently emerged in different fields (and with different
purposes) to prove two different kinds of differential properties of programs.

Finally, semantical investigations of abstract notions of difference have
been given in terms of category theory by Alvarez-Picallo and Ong (Alvarez-
Picallo and Ong, 2019).

7. Conclusion

In this work, we have established a formal connection between differential
logical relations and the incremental λ-calculus, whereby the self-differences
of the former are identified with the program derivatives of the latter. Albeit
the results proved here are not technically involved, by establishing a formal
connection between two different fields they improve the current understand-
ing of differential properties of programs, such an understanding being still
in its infancy. The fact that essentially the same technique has been inde-
pendently developed in different fields, one looking at software optimization
and the other studying semantical notions of distance between programs,
witnesses that, at least in the authors’ opinion, the technique deserves to be
further investigated.

In addition to its conceptual relevance, the connection established in the
present work also allows us to obtain technical improvements both on the the-
ory of incremental λ-calculus and on the one of differential logical relations.
Concerning the former, we have showed how differential logical relations con-
stitute a lightweight operational technique for incremental computing, and

24

we have witnessed that by giving a new, relatively easy proof of soundness
of differentiation. Concerning the latter, we have strengthened the funda-
mental lemma of DLRs by showing how program derivatives constitute self-
differences, this way reaching an higher level of compositionality. A further
consequence of such a connection is the extension of DLRs to calculi with
full recursion by means the step-indexing.

Acknowledgment. The authors are supported by the ERC Consolidator Grant
DLV-818616 DIAPASoN as well as by the ANR project 16CE250011 REPAS.

References

References

Abadi, M., Plotkin, G.D., 2020. A simple differentiable programming lan-
guage. PACMPL 4, 38:1–38:28.

Abramsky, S., 1990. The lazy lambda calculus, in: Turner, D. (Ed.), Research
Topics in Functional Programming, Addison Wesley. pp. 65–117.

Ahmed, A.J., 2006. Step-indexed syntactic logical relations for recursive and
quantified types, in: Proc. of ESOP 2006, pp. 69–83.

Alvarez-Picallo, M., Eyers-Taylor, A., Jones, M.P., Ong, C.L., 2019. Fix-
ing incremental computation - derivatives of fixpoints, and the recursive
semantics of datalog, in: Proc. of ESOP 2019, pp. 525–552.

Alvarez-Picallo, M., Ong, C.L., 2019. Change actions: Models of generalised
differentiation, in: Proc. of FOSSACS 2019, pp. 45–61.

de Amorim, A.A., Gaboardi, M., Hsu, J., Shin-yaKatsumata, Cherigui, I.,
2017. A semantic account of metric preservation, in: Proc. of POPL 2017,
pp. 545–556.

Appel, A.W., McAllester, D.A., 2001. An indexed model of recursive types
for foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems 23, 657–683.

Arntzenius, M., 2017. Static differentiation of monotone fixpoints. URL:
http://www.rntz.net/files/fixderiv.pdf.

25

Barendregt, H.P., 1985. The lambda calculus - its syntax and semantics.
volume 103 of Studies in logic and the foundations of mathematics. North-
Holland.

Barthe, G., Crubillé, R., Dal Lago, U., Gavazzo, F., 2020. On the versatil-
ity of open logical relations - continuity, automatic differentiation, and a
containment theorem, in: Proc. of ESOP 2020, pp. 56–83.

Bartholomew-Biggs, M., Brown, S., Christianson, B., Dixon, L., 2000. Auto-
matic differentiation of algorithms. Journal of Computational and Applied
Mathematics 124, 171 – 190. Numerical Analysis 2000. Vol. IV: Optimiza-
tion and Nonlinear Equations.

Brunel, A., Mazza, D., Pagani, M., 2020. Backpropagation in the simply
typed lambda-calculus with linear negation. PACMPL 4, 64:1–64:27.

Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K., 2014. A theory of
changes for higher-order languages: incrementalizing λ-calculi by static
differentiation, in: Proc. of PLDI 2014, pp. 145–155.

Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L., 2014. Generalized
bisimulation metrics, in: Proc. of CONCUR 2014, pp. 32–46.

Crubillé, R., Dal Lago, U., 2017. Metric reasoning about λ-terms: The
general case, in: Proc. of ESOP 2017, pp. 341–367.

Dal Lago, U., Gavazzo, F., Yoshimizu, A., 2019. Differential logical relations,
part I: the simply-typed case, in: Proc. of ICALP 2019, pp. 111:1–111:14.

Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P., 2004. Metrics for
labelled markov processes. Theoretical Computer Science 318, 323–354.

Du, W., Deng, Y., Gebler, D., 2016. Behavioural pseudometrics for nonde-
terministic probabilistic systems, in: Proc. of SETTA 2016, pp. 67–84.

Ehrhard, T., Regnier, L., 2003. The differential lambda-calculus. Theoretical
Computer Science 309, 1–41.

Gavazzo, F., 2018. Quantitative behavioural reasoning for higher-order effect-
ful programs: Applicative distances, in: Proc. of LICS 2018, pp. 452–461.

26

Gebler, D., Larsen, K.G., Tini, S., 2016. Compositional bisimulation metric
reasoning with probabilistic process calculi. Logical Methods in Computer
Science 12.

Giarrusso, P.G., 2018. Optimizing and incrementalizing higher-order collec-
tion queries by AST transformation. Ph.D. thesis. University of Tübingen.

Giarrusso, P.G., Régis-Gianas, Y., Schuster, P., 2019. Incremental lambda-
calculus in cache-transfer style - static memoization by program transfor-
mation, in: Proc. of ESOP 2019, pp. 553–580.

Girard, J., 1987. Linear logic. Theoretical Computer Science 50, 1–102.

Girard, J., 1988. Normal functors, power series and λ-calculus. Annals of
Pure and Applied Logic 37, 129–177.

Girard, J., Lafont, Y., Taylor, P., 1989. Proofs and Types. Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press.

Lawvere, F.W., 1973. Metric spaces, generalized logic, and closed categories.
Rendiconti del Seminario Matematico e Fisico di Milano 43, 135–166.

Misailovic, S., Roy, D.M., Rinard, M.C., 2011. Probabilistically accurate
program transformations, in: In Proc. of SAS 2011, pp. 316–333.

Mittal, S., 2016. A survey of techniques for approximate computing. ACM
Computing Surveys 48, 62:1–62:33.

Paige, R., Koenig, S., 1982. Finite differencing of computable expressions.
ACM Trans. Program. Lang. Syst. 4, 402–454.

Ramalingam, G., Reps, T.W., 1993. A categorized bibliography on incre-
mental computation, in: Proc. of POPL 1993, pp. 502–510.

Reed, J., Pierce, B.C., 2010. Distance makes the types grow stronger: a
calculus for differential privacy, in: Proc. of ICFP 2010, pp. 157–168.

Richardson, C.H., 1954. An Introduction to the Calculus of Finite Differ-
ences. New York.

Shaikhha, A., Fitzgibbon, A., Vytiniotis, D., Peyton Jones, S., 2019. Effi-
cient differentiable programming in a functional array-processing language.
PACMPL 3, 97:1–97:30.

27

Spivak, M., 1971. Calculus On Manifolds: A Modern Approach To Classical
Theorems Of Advanced Calculus. Avalon Publishing.

Steen, L.A., J. Arthur Seebach, J., 1995. Counterexamples in Topology.
Dover books on mathematics, Dover Publications.

Van Breugel, F., Worrell, J., 2005. A behavioural pseudometric for proba-
bilistic transition systems. Theoretical Computer Science 331, 115–142.

Westbrook, E.M., Chaudhuri, S., 2013. A semantics for approximate program
transformations. CoRR abs/1304.5531. URL: http://arxiv.org/abs/
1304.5531.

28

