Social media has been transforming political communication dynamics for over a decade. Here using nearly a billion tweets, we analyse the change in Twitter’s news media landscape between the 2016 and 2020 US presidential elections. Using political bias and fact-checking tools, we measure the volume of politically biased content and the number of users propagating such information. We then identify influencers—users with the greatest ability to spread news in the Twitter network. We observe that the fraction of fake and extremely biased content declined between 2016 and 2020. However, results show increasing echo chamber behaviours and latent ideological polarization across the two elections at the user and influencer levels.

Political polarization of news media and influencers on Twitter in the 2016 and 2020 US presidential elections

Galeazzi A.;
2023

Abstract

Social media has been transforming political communication dynamics for over a decade. Here using nearly a billion tweets, we analyse the change in Twitter’s news media landscape between the 2016 and 2020 US presidential elections. Using political bias and fact-checking tools, we measure the volume of politically biased content and the number of users propagating such information. We then identify influencers—users with the greatest ability to spread news in the Twitter network. We observe that the fraction of fake and extremely biased content declined between 2016 and 2020. However, results show increasing echo chamber behaviours and latent ideological polarization across the two elections at the user and influencer levels.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-417534930.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3510742
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
  • OpenAlex ND
social impact